Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
Abstract
1. Introduction
1.1. Overview
1.2. Advanced Fabrication Techniques
1.3. Applications in Clinical Practice
2. Natural Hydrogels for Biomedical Applications
2.1. Overview
2.2. Protein-Based Hydrogels
2.2.1. Animal-Derived Proteins
Collagen- and Gelatin-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
Elastin-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
Fibrin-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Albumin-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Silk Fibroin-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Sericin-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
2.2.2. Plant-Derived Proteins
Soy Protein Isolate-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Pea Protein-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Wheat Gluten-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
2.3. Polysaccharide-Based Hydrogels
2.3.1. Animal-Derived Polysaccharides
Chitin-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Chitosan-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Hyaluronic Acid-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
2.3.2. Plant-Derived Polysaccharides
Alginate-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Carrageenan-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Cellulose-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Starch-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Xanthan Gum-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Dextran-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
Pullulan-Based Hydrogels
- Structural Properties
- Fabrication Methods
- Biomedical Applications
- Challenges and Future Perspectives
3. Synthetic Hydrogels for Biomedical Applications
3.1. Overview
3.2. Polyacrylamide-Based Hydrogels
3.2.1. Structural Properties
3.2.2. Fabrication Methods
3.2.3. Biomedical Applications
3.2.4. Limitations and Future Perspectives
3.3. Polyethylene Glycol-Based Hydrogels
3.3.1. Structural Properties
3.3.2. Fabrication Methods
3.3.3. Biomedical Applications
3.3.4. Limitations and Future Perspectives
3.4. Poly(vinyl Alcohol)-Based Hydrogels
3.4.1. Structural Properties
3.4.2. Fabrication Methods
3.4.3. Biomedical Applications
3.4.4. Limitations and Future Perspectives
3.5. Poly(acrylic Acid)-Based Hydrogels
3.5.1. Structural Properties
3.5.2. Fabrication Methods
3.5.3. Biomedical Applications
3.5.4. Limitations and Future Perspectives
3.6. Poloxamer-Based Hydrogels
3.6.1. Structural Properties
3.6.2. Fabrication Methods
3.6.3. Biomedical Applications
3.6.4. Limitations and Future Perspectives
3.7. Poly(N-Isopropylacrylamide)-Based Hydrogels
3.7.1. Structural Properties
3.7.2. Fabrication Methods
3.7.3. Biomedical Applications
3.7.4. Limitations and Future Perspectives
3.8. Poly(lactic Acid)/Poly(lactic-Co-Glycolic Acid)-Based Hydrogels
3.8.1. Structural Properties
3.8.2. Fabrication Methods
3.8.3. Biomedical Applications
3.8.4. Limitations and Future Perspectives
3.9. Polyurethane-Based Hydrogels
3.9.1. Structural Properties
3.9.2. Fabrication Methods
3.9.3. Biomedical Applications
3.9.4. Limitations and Future Perspectives
4. Hybrid Hydrogels for Biomedical Applications
4.1. Overview
4.2. Fabrication Methods
4.3. Biomedical Applications
4.4. Limitations and Future Perspectives
5. Stimuli-Responsive Hydrogels for Biomedical Applications
5.1. Overview
5.2. Temperature-Responsive Hydrogels
5.3. pH-Responsive Hydrogels
5.4. Enzyme-Responsive Hydrogels
5.5. Light-Responsive Hydrogels
5.6. Electric Field-Responsive Hydrogels
5.7. Magnetic Field-Responsive Hydrogels
5.8. Glucose-Responsive Hydrogels
6. Toxicity, Immunogenicity and Biocompatibility of Hydrogels
7. Regulatory Hurdles and Scalability Issues
7.1. Regulatory Hurdles
7.2. Scalability Issues in Hydrogel Manufacturing
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
4D | Four-dimensional |
Ag | Silver |
AgNPs | Silver nanoparticles |
AI | Artificial intelligence |
AIBN | Azobisisobutyronitrile |
Au | Gold |
BLA | Biologics license application |
BME | Biomedical engineering |
CD44 | Cluster of differentiation 44 |
CDER | Center for Drug Evaluation and Research |
CDRH | Center for Devices and Radiological Health |
CEA | Carcinoembryonic antigen |
CG | Carrageenan |
CMC | Carboxymethyl cellulose |
CNCs | Cellulose nanocrystals |
CNFs | Cellulose nanofibers |
CNTs | Carbon nanotubes |
ConA | Concanavalin A |
CRISPR | Clustered regularly interspaced short palindromic repeats |
DC | Degree of crosslinking |
DD | Degree of deacetylation |
DDS | Drug delivery systems |
Dex | Dextran |
DexMA | Dextran–methacrylate |
DL | Deep learning |
DNA | Deoxyribonucleic acid |
DP | Degree of polymerization |
ECH | Epichlorohydrin |
ECM | Extracellular matrix |
EDC | 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide |
EFRHs | Electric field-responsive hydrogels |
ELP | Elastin-like polypeptide |
EMA | European Medicines Agency |
EO | Ethylene oxide |
ERHs | Enzyme-responsive hydrogels |
EU | European Union |
FDA | Food and Drug Administration |
Fe3O4 | Magnetite |
γ-Fe2O3 | Maghemite |
G | α-L-guluronic acid |
GA | Glycolic acid |
GAD | Glutaraldehyde |
GelMA | Gelatin–methacrylate |
GFs | Growth factors |
GI | Gastrointestinal |
GlcNAc | N-acetyl-D-glucosamine |
GMP | Good Manufacturing Practice |
GNP | Genipin |
GO | Graphene oxide |
GOx | Glucose oxidase |
GRAS | Generally Recognized as Safe |
GRHs | Glucose-responsive hydrogels |
H2O2 | Hydrogen peroxide |
HA | Hyaluronic acid |
HPMC | Hydroxypropyl methylcellulose |
HRP | Horseradish peroxidase |
HSA | Human serum albumin |
IARC | International Agency for Research on Cancer |
INDA | Investigational new drug application |
ISO | International Organization for Standardization |
LA | Lactic acid |
LCST | Lower critical solution temperature |
LRHs | Light-responsive hydrogels |
M | β-D-mannuronic acid |
MBAm | N,N′-methylenebisacrylamide |
MCC | Microcrystalline cellulose |
MFRHs | Magnetic field-responsive hydrogels |
ML | Machine learning |
MMPs | Matrix metalloproteinases |
MNPs | Magnetic nanoparticles |
MoS2 | Molybdenum disulfide |
MRI | Magnetic resonance imaging |
mRNA | Messenger ribonucleic acid |
MSCs | Mesenchymal stem cells |
N/A | Not applicable |
ND | Non-degradable |
NDA | New drug application |
NHS | N-hydroxysuccinimide |
NIPAAm | N-isopropylacrylamide |
NIR | Near-infrared |
NPs | Nanoparticles |
NSAIDs | Nonsteroidal anti-inflammatory drugs |
PAA | Poly(acrylic acid) |
PAAm | Poly(acrylamide) |
PANI | Polyaniline |
PBA | Phenylboronic acid |
PCL | Poly(ε-caprolactone) |
PD | Poorly degradable |
PEDOT | Poly(3,4-ethylenedioxythiophene) |
PEG | Poly(ethylene glycol) |
PEGDA | Poly(ethylene glycol) diacrylate |
PEO | Poly(ethylene oxide) |
pHEMA | Poly(2-hydroxyethyl methacrylate) |
pHRHs | pH-responsive hydrogels |
PLA | Poly(lactic acid) |
PLGA | Poly(lactic-co-glycolic) acid |
PMA | Premarket approval |
PNIPAAm | Poly(N-isopropylacrylamide) |
PO | Propylene oxide |
PPO | Poly(propylene oxide) |
PPy | Polypyrrole |
PSA | Prostate-specific antigen |
PSS | Polystyrene sulfonate |
PU | Polyurethane |
PVA | Poly(vinyl alcohol) |
QC | Quality control |
QMS | Quality Management System |
RGD | Arginine–glycine–aspartic acid |
RHAMM | Receptor for hyaluronic acid-mediated motility |
RM | Regenerative medicine |
SF | Silk fibroin |
SiO2 | Silica |
SPI | Soy protein isolate |
STPP | Sodium tripolyphosphate |
TE | Tissue engineering |
TG | Transglutaminase |
TR | Tissue repair |
TRHs | Thermoresponsive hydrogels |
UCST | Upper critical solution temperature |
UV | Ultraviolet |
VEGF | Vascular endothelial growth factor |
VIS | Visible |
VPTT | Volume phase transition temperature |
XG | Xanthan gum |
References
- Khandaker, T.; Anik, M.A.A.M.; Nandi, A.; Islam, T.; Islam, M.M.; Hasan, M.K.; Dhar, P.K.; Latif, M.A.; Hossain, M.S. Recent progress in gel catalysts: Boosting efficiency for sustainable energy applications. Catal. Sci. Technol. 2025, 15, 1357–1389. [Google Scholar] [CrossRef]
- Metze, F.K.; Sant, S.; Meng, Z.; Klok, H.A.; Kaur, K. Swelling-Activated, Soft Mechanochemistry in Polymer Materials. Langmuir 2023, 39, 3546–3557. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.N.; Sujith, S. Hydrogels and Organogels as Food Delivery System. In Handbook of Nutraceuticals: Science, Technology and Engineering; Rajakumari, R., Thomas, S., Eds.; Springer: Cham, Switzerland, 2024; pp. 1–45. [Google Scholar] [CrossRef]
- Segneanu, A.-E.; Herea, D.-D.; Buema, G.; Bradu, I.A.; Cepan, M.; Grozescu, I. Advanced Aerogels for Water Remediation: Unraveling Their Potential in Fats, Oils, and Grease Sorption—A Comprehensive Review. Gels 2025, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Buema, G.; Segneanu, A.-E.; Herea, D.-D.; Grozescu, I. Gels for Water Remediation: Current Research and Perspectives. Gels 2024, 10, 585. [Google Scholar] [CrossRef] [PubMed]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef]
- Kaith, B.S.; Singh, A.; Sharma, A.K.; Sud, D. Hydrogels: Synthesis, Classification, Properties and Potential Applications—A Brief Review. J. Polym. Environ. 2021, 29, 3827–3841. [Google Scholar] [CrossRef]
- Khan, F.; Atif, M.; Haseen, M.; Kamal, S.; Khan, M.S.; Shahid, S.; Nami, S.A.A. Synthesis, classification and properties of hydrogels: Their applications in drug delivery and agriculture. J. Mater. Chem. B 2022, 10, 170–203. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Mehta, P.; Sharma, M.; Devi, M. Hydrogels: An overview of its classifications, properties, and applications. J. Mech. Behav. Biomed. Mater. 2023, 147, 106145. [Google Scholar] [CrossRef]
- Dodda, J.M.; Deshmukh, K.; Bezuidenhout, D.; Yeh, Y.-C. Chapter 1: Hydrogels: Definition, History, Classifications, Formation, Constitutive Characteristics, and Applications. In Multicomponent Hydrogels: Smart Materials for Biomedical Applications; Dodda, J.M., Deshmukh, K., Bezuidenhout, D., Eds.; Royal Society of Chemistry: London, UK, 2023; pp. 1–25. [Google Scholar] [CrossRef]
- Theus, A.S.; Ning, L.; Kabboul, G.; Hwang, B.; Tomov, M.L.; LaRock, C.N.; Bauser-Heaton, H.; Mahmoudi, M.; Serpooshan, V. 3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties. iScience 2022, 25, 104947. [Google Scholar] [CrossRef]
- Bejenaru, L.E.; Segneanu, A.-E.; Bejenaru, C.; Bradu, I.A.; Vlase, T.; Herea, D.-D.; Văruţ, M.C.; Bălăşoiu, R.M.; Biţă, A.; Radu, A.; et al. Thermoresponsive Gels with Rosemary Essential Oil: A Novel Topical Carrier for Antimicrobial Therapy and Drug Delivery Applications. Gels 2025, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Pablos, J.L.; Lozano, D.; Manzano, M.; Vallet-Regí, M. Regenerative medicine: Hydrogels and mesoporous silica nanoparticles. Mater. Today Bio 2024, 29, 101342. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.M.; De la Hoz Siegler, H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024, 10, 216. [Google Scholar] [CrossRef]
- Revete, A.; Aparicio, A.; Cisterna, B.A.; Revete, J.; Luis, L.; Ibarra, E.; Segura González, E.A.; Molino, J.; Reginensi, D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int. J. Biomater. 2022, 2022, 3606765. [Google Scholar] [CrossRef]
- Choi, H.; Choi, W.-S.; Jeong, J.-O. A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels 2024, 10, 693. [Google Scholar] [CrossRef]
- Chelu, M.; Calderon Moreno, J.M.; Musuc, A.M.; Popa, M. Natural Regenerative Hydrogels for Wound Healing. Gels 2024, 10, 547. [Google Scholar] [CrossRef]
- Lu, P.; Ruan, D.; Huang, M.; Tian, M.; Zhu, K.; Gan, Z.; Xiao, Z. Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions. Signal Transduct. Target. Ther. 2024, 9, 166. [Google Scholar] [CrossRef]
- Feng, W.; Wang, Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. Adv. Sci. 2023, 10, 2303326. [Google Scholar] [CrossRef]
- Londhe, P.V.; Londhe, M.V.; Salunkhe, A.B.; Laha, S.S.; Thompson Mefford, O.; Thorat, N.D.; Khot, V.M. Magnetic hydrogel (MagGel): An evolutionary pedestal for anticancer therapy. Coord. Chem. Rev. 2025, 522, 216228. [Google Scholar] [CrossRef]
- León-Campos, M.I.; Mendoza, J.J.; Aguayo-Morales, H.; Cobos-Puc, L.E.; Cabrera-Munguía, D.A.; Claudio-Rizo, J.A. The biological applications of IPN hydrogels. ADMET DMPK 2024, 12, 581–621. [Google Scholar] [CrossRef] [PubMed]
- Penkavova, V.; Spalova, A.; Tomas, J.; Tihon, J. Polyacrylamide hydrogels prepared by varying water content during polymerization: Material characterization, reswelling ability, and aging resistance. Polym. Eng. Sci. 2022, 62, 901–916. [Google Scholar] [CrossRef]
- Shi, X.; Janmey, P.A. Large Polyacrylamide Hydrogels for Large-Batch Cell Culture and Mechanobiological Studies. Macromol. Biosci. 2023, 23, e2300042. [Google Scholar] [CrossRef] [PubMed]
- Olaret, E.; Balanuca, B.; Ghitman, J.; Stancu, I.-C.; Serafim, A. Reinforcement of nanostructured polyacrylamide hydrogels through the generation of secondary physical network using the nanoparticles’ functional groups. Polym. Test. 2024, 132, 108380. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, Q.; Yu, S.; Akhavan, B. Poly Ethylene Glycol (PEG)-Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review. Adv. Healthc. Mater. 2023, 12, 2300105. [Google Scholar] [CrossRef]
- Sun, S.; Cui, Y.; Yuan, B.; Dou, M.; Wang, G.; Xu, H.; Wang, J.; Yin, W.; Wu, D.; Peng, C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front. Bioeng. Biotechnol. 2023, 11, 1117647. [Google Scholar] [CrossRef]
- Cai, M.-H.; Chen, X.-Y.; Fu, L.-Q.; Du, W.-L.; Yang, X.; Mou, X.-Z.; Hu, P.-Y. Design and Development of Hybrid Hydrogels for Biomedical Applications: Recent Trends in Anticancer Drug Delivery and Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 630943. [Google Scholar] [CrossRef]
- Attasgah, R.B.; Velasco-Rodríguez, B.; Pardo, A.; Fernández-Vega, J.; Arellano-Galindo, L.; Rosales-Rivera, L.C.; Prieto, G.; Barbosa, S.; Soltero, J.F.A.; Mahmoudi, M.; et al. Development of functional hybrid scaffolds for wound healing applications. iScience 2022, 25, 104019. [Google Scholar] [CrossRef]
- Murphy, C.A.; Serafin, A.; Collins, M.N. Development of 3D Printable Gelatin Methacryloyl/Chondroitin Sulfate/Hyaluronic Acid Hydrogels as Implantable Scaffolds. Polymers 2024, 16, 1958. [Google Scholar] [CrossRef]
- Olteanu, G.; Neacşu, S.M.; Joiţa, F.A.; Musuc, A.M.; Lupu, E.C.; Ioniţă-Mîndrican, C.-B.; Lupuliasa, D.; Mititelu, M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 3849. [Google Scholar] [CrossRef]
- Protsak, I.S.; Morozov, Y.M. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review. Gels 2025, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Bordbar-Khiabani, A.; Gasik, M. Smart Hydrogels for Advanced Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 3665. [Google Scholar] [CrossRef] [PubMed]
- Jahanbekam, S.; Asare-Addo, K.; Alipour, S.; Nokhodchi, A. Smart hydrogels and the promise of multi-responsive in-situ systems. J. Drug Deliv. Sci. Technol. 2025, 107, 106758. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, B.M. Current Advances in Stimuli-Responsive Hydrogels as Smart Drug Delivery Carriers. Gels 2023, 9, 838. [Google Scholar] [CrossRef]
- Acharya, R.; Dutta, S.D.; Mallik, H.; Patil, T.V.; Ganguly, K.; Randhawa, A.; Kim, H.; Lee, J.; Park, H.; Mo, C.; et al. Physical stimuli-responsive DNA hydrogels: Design, fabrication strategies, and biomedical applications. J. Nanobiotechnol. 2025, 23, 233. [Google Scholar] [CrossRef]
- Solanki, R.; Bhatia, D. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels 2024, 10, 440. [Google Scholar] [CrossRef]
- El-Husseiny, H.M.; Mady, E.A.; El-Dakroury, W.A.; Doghish, A.S.; Tanaka, R. Stimuli-responsive hydrogels: Smart state of-the-art platforms for cardiac tissue engineering. Front. Bioeng. Biotechnol. 2023, 11, 1174075. [Google Scholar] [CrossRef]
- Deng, Y.; Xi, J.; Meng, L.; Lou, Y.; Seidi, F.; Wu, W.; Xiao, H. Stimuli-Responsive Nanocellulose Hydrogels: An overview. Eur. Polym. J. 2022, 180, 111591. [Google Scholar] [CrossRef]
- Delgado-Pujol, E.J.; Martínez, G.; Casado-Jurado, D.; Vázquez, J.; León-Barberena, J.; Rodríguez-Lucena, D.; Torres, Y.; Alcudia, A.; Begines, B. Hydrogels and Nanogels: Pioneering the Future of Advanced Drug Delivery Systems. Pharmaceutics 2025, 17, 215. [Google Scholar] [CrossRef]
- Mamidi, N.; De Silva, F.F.; Vacas, A.B.; Gutiérrez Gómez, J.A.; Montes Goo, N.Y.; Mendoza, D.R.; Reis, R.L.; Kundu, S.C. Multifaceted Hydrogel Scaffolds: Bridging the Gap between Biomedical Needs and Environmental Sustainability. Adv. Healthc. Mater. 2024, 13, e2401195. [Google Scholar] [CrossRef]
- Farazin, A.; Gheisizadeh, A. Revolutionizing Bone Repair and Regeneration: The Role of Machine Learning in Designing Advanced Nanocomposite Hydrogels. Polym. Adv. Technol. 2025, 36, e70161. [Google Scholar] [CrossRef]
- Rezakhani, L.; Gharibshahian, M.; Salehi, M.; Zamani, S.; Abpeikar, Z.; Ghaderzadeh, O.; Alizadeh, M.; Masoudi, A.; Rezaei, N.; Cheraghali, D. Recent advances in hydrogels applications for tissue engineering and clinical trials. Regen. Ther. 2024, 26, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, A.; Ezati, M.; Nasr, M.P.; Zumberg, I.; Provaznik, V. Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration. ACS Omega 2024, 9, 6184–6218. [Google Scholar] [CrossRef]
- Antezana, P.E.; Municoy, S.; Ostapchuk, G.; Catalano, P.N.; Hardy, J.G.; Evelson, P.A.; Orive, G.; Desimone, M.F. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023, 15, 2743. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Mohd Ripin, Z. 4D Printing in Biomedical Engineering: Advancements, Challenges, and Future Directions. J. Funct. Biomater. 2023, 14, 347. [Google Scholar] [CrossRef]
- Alli, Y.A.; Anuar, H.; Bamisaye, A.; Manshor, M.R.; Etafo, N.O.; Bamidele, M.O.; Rasheed, M.A.; Olatunde, S.K.; Akinfenwa, A.S.; Lawal, A. The appealing prospect of hydrogel in 3D/4D printing technology: Overview and opportunities. Polymer 2024, 315, 127823. [Google Scholar] [CrossRef]
- Nain, A.; Chakraborty, S.; Jain, N.; Choudhury, S.; Chattopadhyay, S.; Chatterjee, K.; Debnath, S. 4D hydrogels: Fabrication strategies, stimulation mechanisms, and biomedical applications. Biomater. Sci. 2024, 12, 3249–3272. [Google Scholar] [CrossRef]
- Hassan, M.; Mohanty, A.K.; Wang, T.; Dhakal, H.N.; Misra, M. Current Status and Future Outlook of 4D Printing of Polymers and Composites—A Prospective. Compos. Part C Open Access 2025, 17, 100602. [Google Scholar] [CrossRef]
- Negut, I.; Bita, B. Exploring the Potential of Artificial Intelligence for Hydrogel Development—A Short Review. Gels 2023, 9, 845. [Google Scholar] [CrossRef]
- Li, Z.; Song, P.; Li, G.; Han, Y.; Ren, X.; Bai, L.; Su, J. AI energized hydrogel design, optimization and application in biomedicine. Mater. Today Bio 2024, 25, 101014. [Google Scholar] [CrossRef]
- Bediaga-Bañeres, H.; Moreno-Benítez, I.; Arrasate, S.; Pérez-Álvarez, L.; Halder, A.K.; Cordeiro, M.N.D.S.; González-Díaz, H.; Vilas-Vilela, J.L. Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study. Polymers 2025, 17, 121. [Google Scholar] [CrossRef]
- Fareed, M.M.; Shityakov, S. Next-Generation Hydrogel Design: Computational Advances in Synthesis, Characterization, and Biomedical Applications. Polymers 2025, 17, 1373. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Lin, D.; Huang, X.; Feng, J.; Jin, A.; Wang, F.; Lv, Q.; Lei, L.; Pan, W. Developing hydrogels for gene therapy and tissue engineering. J. Nanobiotechnol. 2024, 22, 182. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Kim, D.Y.; Lim, S.I.; Lim, H.-R. Hydrogel-Based Biointerfaces: Recent Advances, Challenges, and Future Directions in Human–Machine Integration. Gels 2025, 11, 232. [Google Scholar] [CrossRef]
- Hosseinzadeh, B.; Ahmadi, M. Degradable hydrogels: Design mechanisms and versatile applications. Mater. Today Sustain. 2023, 23, 100468. [Google Scholar] [CrossRef]
- Clegg, J.R.; Adebowale, K.; Zhao, Z.; Mitragotri, S. Hydrogels in the clinic: An update. Bioeng. Transl. Med. 2024, 9, e10680. [Google Scholar] [CrossRef]
- Chelu, M.; Popa, M.; Calderón Moreno, J.M. Applications of Hydrogels in Emergency Therapy. Gels 2025, 11, 234. [Google Scholar] [CrossRef]
- Rumon, M.M.H.; Rahman, M.S.; Akib, A.A.; Sohag, M.S.; Rakib, M.R.A.; Khan, M.A.R.; Yesmin, F.; Shakil, M.S.; Khan, M.M.R. Progress in hydrogel toughening: Addressing structural and crosslinking challenges for biomedical applications. Discov. Mater. 2025, 5, 5. [Google Scholar] [CrossRef]
- Zöller, K.; To, D.; Bernkop-Schnürch, A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025, 312, 122718. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Noruzi, S.; Kesharwani, P.; Sahebkar, A. Hydrogel-based dressing for wound healing: A systematic review of clinical trials. Int. J. Biol. Macromol. 2025, 308, 142322. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Muñana-González, S.; Lanceros-Mendez, S.; Ruiz-Rubio, L.; Alvarez, L.P.; Vilas-Vilela, J.L. Biodegradable Natural Hydrogels for Tissue Engineering, Controlled Release, and Soil Remediation. Polymers 2024, 16, 2599. [Google Scholar] [CrossRef]
- Sepe, F.; Valentino, A.; Marcolongo, L.; Petillo, O.; Calarco, A.; Margarucci, S.; Peluso, G.; Conte, R. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels 2025, 11, 198. [Google Scholar] [CrossRef]
- Ghiorghita, C.-A.; Platon, I.-V.; Lazar, M.M.; Dinu, M.V.; Aprotosoaie, A.C. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydr. Polym. 2024, 334, 122033. [Google Scholar] [CrossRef] [PubMed]
- Buwalda, S.J. ‘Click’ hydrogels from renewable polysaccharide resources: Bioorthogonal chemistry for the preparation of alginate, cellulose and other plant-based networks with biomedical applications. Int. J. Biol. Macromol. 2024, 282, 136695. [Google Scholar] [CrossRef] [PubMed]
- Abdl Aali, R.A.K.; Al-Sahlany, S.T.G. Gellan Gum as a Unique Microbial Polysaccharide: Its Characteristics, Synthesis, and Current Application Trends. Gels 2024, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Dawson, C.; Lamb, M.; Mueller, E.; Stefanek, E.; Akbari, M.; Hoare, T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front. Bioeng. Biotechnol. 2022, 10, 849831. [Google Scholar] [CrossRef]
- Man, K.; Brunet, M.Y.; Federici, A.S.; Hoey, D.A.; Cox, S.C. An ECM-Mimetic Hydrogel to Promote the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles for Bone Regeneration. Front. Bioeng. Biotechnol. 2022, 10, 829969. [Google Scholar] [CrossRef]
- Karoyo, A.H.; Wilson, L.D. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. Materials 2021, 14, 1095. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Aslam, M.A.; Abdullah, M.F.B.; Al-Arjan, W.S.; Stojanovic, G.M.; Hasan, A. Hydrogels: Classifications, fundamental properties, applications, and scopes in recent advances in tissue engineering and regenerative medicine—A comprehensive review. Arab. J. Chem. 2024, 17, 105968. [Google Scholar] [CrossRef]
- Duarte, A.C.; Costa, E.C.; Filipe, H.A.L.; Saraiva, S.M.; Jacinto, T.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P. Animal-derived products in science and current alternatives. Biomater. Adv. 2023, 151, 213428. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Krajewska, A.; Dziki, D.; Hassoon, W.H. Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review. Sustainability 2024, 16, 7701. [Google Scholar] [CrossRef]
- Sharma, S.; Rai, V.K.; Narang, R.K.; Markandeywar, T.S. Collagen-based formulations for wound healing: A literature review. Life Sci. 2022, 290, 120096. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Rubio-Valle, J.F.; Romero, A.; Ostos, F.J.; Rafii-El-Idrissi Benhnia, M.; Perez-Puyana, V. Biocompatible and Thermoresistant Hydrogels Based on Collagen and Chitosan. Polymers 2022, 14, 272. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Z.; Xie, Y.; Cai, W.; Zhu, X.; Jia, Y.; Zhang, Z.; Xu, F.; Huang, G. Engineering strong and tough collagen hydrogels and tissue constructs via twisting and crosslinking. Cell Rep. Phys. Sci. 2025, 6, 102454. [Google Scholar] [CrossRef]
- Gheysoori, P.; Paydayesh, A.; Jafari, M.; Peidayesh, H. Thermoresponsive nanocomposite hydrogels based on Gelatin/poly (N–isopropylacrylamide) (PNIPAM) for controlled drug delivery. Eur. Polym. J. 2023, 186, 111846. [Google Scholar] [CrossRef]
- Andreazza, R.; Morales, A.; Pieniz, S.; Labidi, J. Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers 2023, 15, 1026. [Google Scholar] [CrossRef]
- Fan, R.; Cheng, Y.; Wang, R.; Zhang, T.; Zhang, H.; Li, J.; Song, S.; Zheng, A. Thermosensitive Hydrogels and Advances in Their Application in Disease Therapy. Polymers 2022, 14, 2379. [Google Scholar] [CrossRef]
- She, J.; Liu, J.; Mu, Y.; Lv, S.; Tong, J.; Liu, L.; He, T.; Wang, J.; Wei, D. Recent advances in collagen-based hydrogels: Materials, preparation and applications. React. Funct. Polym. 2025, 207, 106136. [Google Scholar] [CrossRef]
- Yammine, P.; El Safadi, A.; Kassab, R.; El-Nakat, H.; Obeid, P.J.; Nasr, Z.; Tannous, T.; Sari-Chmayssem, N.; Mansour, A.; Chmayssem, A. Types of Crosslinkers and Their Applications in Biomaterials and Biomembranes. Chemistry 2025, 7, 61. [Google Scholar] [CrossRef]
- Khezerlou, A.; Sani, M.A.; Rhim, J.-W. Genipin crosslinked polysaccharide packaging films: An eco-friendly and innovative strategy to improve the performance of food packaging materials. Carbohydr. Polym. Technol. Appl. 2025, 9, 100732. [Google Scholar] [CrossRef]
- Sapuła, P.; Bialik-Wąs, K.; Malarz, K. Are Natural Compounds a Promising Alternative to Synthetic Cross-Linking Agents in the Preparation of Hydrogels? Pharmaceutics 2023, 15, 253. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xu, Y.; Dong, L.; Desai, M.S.; Xia, J.; Liang, M.; Lee, S.-W.; Mi, S.; Sun, W. Design of functional hydrogels using smart polymer based on elastin-like polypeptides. Chem. Eng. J. 2022, 435, 135155. [Google Scholar] [CrossRef]
- Dragojevic, S.; Turner, L.; Pal, P.; Janorkar, A.V.; Raucher, D. Elastin-like Polypeptide Hydrogels for Tunable, Sustained Local Chemotherapy in Malignant Glioma. Pharmaceutics 2022, 14, 2072. [Google Scholar] [CrossRef] [PubMed]
- Al Musaimi, O.; Ng, K.W.; Gavva, V.; Mercado-Valenzo, O.M.; Haroon, H.B.; Williams, D.R. Elastin-Derived Peptide-Based Hydrogels as a Potential Drug Delivery System. Gels 2024, 10, 531. [Google Scholar] [CrossRef]
- Wang, D.; Zeng, J.; Zhu, H.; Liu, S.; Jia, L.; Liu, W.; Wang, Q.; Wang, S.; Liu, W.; Zhou, J.; et al. Extrusion bioprinting of elastin-containing bioactive double-network tough hydrogels for complex elastic tissue regeneration. Aggregate 2024, 5, e477. [Google Scholar] [CrossRef]
- Bramhe, P.; Rarokar, N.; Kumbhalkar, R.; Saoji, S.; Khedekar, P. Natural and synthetic polymeric hydrogel: A bioink for 3D bioprinting of tissue models. J. Drug Deliv. Sci. Technol. 2024, 101, 106204. [Google Scholar] [CrossRef]
- Carton, F.; Rizzi, M.; Canciani, E.; Sieve, G.; Di Francesco, D.; Casarella, S.; Di Nunno, L.; Boccafoschi, F. Use of Hydrogels in Regenerative Medicine: Focus on Mechanical Properties. Int. J. Mol. Sci. 2024, 25, 11426. [Google Scholar] [CrossRef]
- Suhar, R.A.; Doulames, V.M.; Liu, Y.; Hefferon, M.E.; Figueroa, O., 3rd; Buabbas, H.; Heilshorn, S.C. Hyaluronan and elastin-like protein (HELP) gels significantly improve microsphere retention in the myocardium. Biomater. Sci. 2022, 10, 2590–2608. [Google Scholar] [CrossRef]
- Palumbo, F.S.; Calligaris, M.; Calzà, L.; Fiorica, C.; Baldassarro, V.A.; Carreca, A.P.; Lorenzini, L.; Giuliani, A.; Carcione, C.; Cuscino, N.; et al. Topical application of a hyaluronic acid-based hydrogel integrated with secretome of human mesenchymal stromal cells for diabetic ulcer repair. Regen. Ther. 2024, 26, 520–532. [Google Scholar] [CrossRef]
- Yu, Z.; Li, H.; Xia, P.; Kong, W.; Chang, Y.; Fu, C.; Wang, K.; Yang, X.; Qi, Z. Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. J. Biol. Eng. 2020, 14, 22. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, Y.; Liu, Y.; Yang, R.; Liu, B.; Li, J.; Xu, Z.; Zhang, Q.; Yang, J.; Liu, W. Artificial apoptotic cells/VEGF-loaded injectable hydrogel united with immunomodification and revascularization functions to reduce cardiac remodeling after myocardial infarction. Nano Today 2021, 39, 101227. [Google Scholar] [CrossRef]
- Sierra-Sánchez, Á.; Sanabria-de la Torre, R.; Ubago-Rodríguez, A.; Quiñones-Vico, M.I.; Montero-Vílchez, T.; Sánchez-Díaz, M.; Arias-Santiago, S. Blood Plasma, Fibrinogen or Fibrin Biomaterial for the Manufacturing of Skin Tissue-Engineered Products and Other Dermatological Treatments: A Systematic Review. J. Funct. Biomater. 2025, 16, 79. [Google Scholar] [CrossRef]
- Sanz-Horta, R.; Matesanz, A.; Gallardo, A.; Reinecke, H.; Jorcano, J.L.; Acedo, P.; Velasco, D.; Elvira, C. Technological advances in fibrin for tissue engineering. J. Tissue Eng. 2023, 14, 20417314231190288. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Dan, X.; Chen, H.; Li, T.; Liu, B.; Ju, Y.; Li, Y.; Lei, L.; Fan, X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact. Mater. 2024, 40, 597–623. [Google Scholar] [CrossRef] [PubMed]
- Beheshtizadeh, N.; Gharibshahian, M.; Bayati, M.; Maleki, R.; Strachan, H.; Doughty, S.; Tayebi, L. Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomed. Pharmacother. 2023, 166, 115301. [Google Scholar] [CrossRef]
- Bonhome-Espinosa, A.B.; Campos, F.; Durand-Herrera, D.; Sánchez-López, J.D.; Schaub, S.; Durán, J.D.G.; Lopez-Lopez, M.T.; Carriel, V. In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering. J. Mech. Behav. Biomed. Mater. 2020, 104, 103619. [Google Scholar] [CrossRef]
- Wein, S.; Jung, S.A.; Al Enezy-Ulbrich, M.A.; Reicher, L.; Rütten, S.; Kühnel, M.; Jonigk, D.; Jahnen-Dechent, W.; Pich, A.; Neuss, S. Impact of Fibrin Gel Architecture on Hepatocyte Growth Factor Release and Its Role in Modulating Cell Behavior for Tissue Regeneration. Gels 2024, 10, 402. [Google Scholar] [CrossRef]
- Wang, P.; Cai, F.; Li, Y.; Yang, X.; Feng, R.; Lu, H.; Bai, X.; Han, J. Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: A literature review. Int. J. Biol. Macromol. 2024, 261, 129300. [Google Scholar] [CrossRef]
- Pereira, R.V.S.; EzEldeen, M.; Ugarte-Berzal, E.; Martens, E.; Malengier-Devlies, B.; Vandooren, J.; Vranckx, J.J.; Matthys, P.; Opdenakker, G. Physiological fibrin hydrogel modulates immune cells and molecules and accelerates mouse skin wound healing. Front. Immunol. 2023, 14, 1170153. [Google Scholar] [CrossRef]
- Meng, R.; Zhu, H.; Deng, P.; Li, M.; Ji, Q.; He, H.; Jin, L.; Wang, B. Research progress on albumin-based hydrogels: Properties, preparation methods, types and its application for antitumor-drug delivery and tissue engineering. Front. Bioeng. Biotechnol. 2023, 11, 1137145. [Google Scholar] [CrossRef]
- Qu, N.; Song, K.; Ji, Y.; Liu, M.; Chen, L.; Lee, R.J.; Teng, L. Albumin Nanoparticle-Based Drug Delivery Systems. Int. J. Nanomed. 2024, 19, 6945–6980. [Google Scholar] [CrossRef] [PubMed]
- Kędzierska, M.; Bańkosz, M.; Sala, K.; Garbowska, C.; Grzywacz, O.; Wrzesińska, W.; Liber-Kneć, A.; Potemski, P.; Tyliszczak, B. Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use. Int. J. Mol. Sci. 2025, 26, 258. [Google Scholar] [CrossRef] [PubMed]
- Madappura, A.P.; Madduri, S. A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine. Comput. Struct. Biotechnol. J. 2023, 21, 4868–4886. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Liu, Y.; He, H.; Wang, H. Application of Silk-Fibroin-Based Hydrogels in Tissue Engineering. Gels 2023, 9, 431. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Luo, Y.; Zhu, R.; Zheng, M.; Yang, J.; Bai, S. Silk Fibroin-Based Tough Hydrogels with Strong Underwater Adhesion for Fast Hemostasis and Wound Sealing. Biomacromolecules 2023, 24, 319–331. [Google Scholar] [CrossRef]
- Shen, C.; Zhou, Z.; Li, R.; Yang, S.; Zhou, D.; Zhou, F.; Geng, Z.; Su, J. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics 2025, 15, 560–584. [Google Scholar] [CrossRef]
- Li, D.; Liang, R.; Wang, Y.; Zhou, Y.; Cai, W. Preparation of silk fibroin-derived hydrogels and applications in skin regeneration. Health Sci. Rep. 2024, 7, e2295. [Google Scholar] [CrossRef]
- Ghorbani, M.; Vasheghani-Farahani, E.; Azarpira, N.; Hashemi-Najafabadi, S.; Ghasemi, A. Dual-crosslinked in-situ forming alginate/silk fibroin hydrogel with potential for bone tissue engineering. Biomater. Adv. 2023, 153, 213565. [Google Scholar] [CrossRef]
- Feng, S.; Niu, L.; Wang, X.; Zhang, Q.; You, R.; Li, M.; Feng, Y. Injectable self-crosslinking hyaluronic acid/silk fibroin blend hydrogel based on disulfide bond. Carbohydr. Polym. 2025, 356, 123374. [Google Scholar] [CrossRef]
- Amirian, J.; Wychowaniec, J.K.; D′Este, M.; Vernengo, A.J.; Metlova, A.; Sizovs, A.; Brangule, A.; Bandere, D. Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels. Biomacromolecules 2024, 25, 7078–7097. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Dan, X.; Ju, Y.; Li, T.; Liu, B.; Li, Y.; Lei, L.; Fan, X. Silk fibroin for cosmetic dermatology. Chem. Eng. J. 2025, 506, 159986. [Google Scholar] [CrossRef]
- Panneerselvam, D.; Murugesan, P.; Moses, J.A. Silk fibroin and prospective applications in the food sector. Eur. Polym. J. 2024, 212, 113058. [Google Scholar] [CrossRef]
- Aad, R.; Dragojlov, I.; Vesentini, S. Sericin Protein: Structure, Properties, and Applications. J. Funct. Biomater. 2024, 15, 322. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.; Costa, E.C.; Reis, S.; Spencer, C.; Calhelha, R.C.; Miguel, S.P.; Ribeiro, M.P.; Barros, L.; Vaz, J.A.; Coutinho, P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers 2022, 14, 4931. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Kim, S.-G.; Garagiola, U. Relevant Properties and Potential Applications of Sericin in Bone Regeneration. Curr. Issues Mol. Biol. 2023, 45, 6728–6742. [Google Scholar] [CrossRef] [PubMed]
- Veiga, A.; Foster, O.; Kaplan, D.L.; Oliveira, A.L. Expanding the boundaries of silk sericin biomaterials in biomedical applications. J. Mater. Chem. B 2024, 12, 7020–7040. [Google Scholar] [CrossRef]
- Du, Z.; Yan, Z.; Guo, Y.; Ye, R.; Tehoungue, A.; Li, Y.; Zhang, G.; Zhang, Y. A high stretchable, transparent sericin hydrogel with antioxidant activity formed by CaCl2-formic acid dissolution system. Polymer 2025, 317, 127929. [Google Scholar] [CrossRef]
- Arabpour, Z.; Abedi, F.; Salehi, M.; Baharnoori, S.M.; Soleimani, M.; Djalilian, A.R. Hydrogel-Based Skin Regeneration. Int. J. Mol. Sci. 2024, 25, 1982. [Google Scholar] [CrossRef]
- Ribeiro, M.; Simões, M.; Vitorino, C.; Mascarenhas-Melo, F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024, 10, 188. [Google Scholar] [CrossRef]
- Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024, 10, 43. [Google Scholar] [CrossRef]
- Dragojlov, I.; Aad, R.; Ami, D.; Mangiagalli, M.; Natalello, A.; Vesentini, S. Silk Sericin-Based Electrospun Nanofibers Forming Films for Cosmetic Applications: Preparation, Characterization, and Efficacy Evaluation. Molecules 2025, 30, 715. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, S.; Tahir, H.M.; Ali, S.; Ali, A.; Muzamil, A.; Murtaza, Z.; Zahoor, N. Diabetic wound healing potential of silk sericin protein based hydrogels enriched with plant extracts. Int. J. Biol. Macromol. 2023, 242, 125184. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-J.; Das, G.; Shin, H.-S.; Patra, J.K. Silk Sericin Protein Materials: Characteristics and Applications in Food-Sector Industries. Int. J. Mol. Sci. 2023, 24, 4951. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Z.; Jeon, J.; Jiang, B.; Subramani, S.V.; Li, J.; Zhang, F. Protein-Based Hydrogels and Their Biomedical Applications. Molecules 2023, 28, 4988. [Google Scholar] [CrossRef]
- Davari, N.; Bakhtiary, N.; Khajehmohammadi, M.; Sarkari, S.; Tolabi, H.; Ghorbani, F.; Ghalandari, B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers 2022, 14, 986. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Zhou, L.; Wang, Z. Soy protein isolates: A review of their composition, aggregation, and gelation. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1940–1957. [Google Scholar] [CrossRef]
- He, N.; Chen, X.; Wang, L.; Wen, J.; Li, Y.; Cao, Q.; Liu, Z.; Li, B. Fabrication of Composite Hydrogels Based on Soy Protein Isolate and their Controlled Globular Protein Delivery. Glob. Chall. 2019, 3, 1900030. [Google Scholar] [CrossRef]
- Tan, X.; Song, Y.; Shang, B.; Geng, M.; Teng, F. Fabrication of composite gels based on soy protein isolate and κ-carrageenan and delivery of riboflavin: Insights into microstructure, gel properties and digestive characteristics. J. Sci. Food Agric. 2025, 105, 3632–3642. [Google Scholar] [CrossRef]
- Li, T.-H.; Yang, Y.-Q.; Lv, D.-Y.; Wang, G.-S.; Guo, J.; Wan, Z.-L.; Yang, X.-Q. Formation of a transparent soy protein hydrogel: Controlled thermal aggregation of protein using glutaminase. Food Hydrocoll. 2024, 155, 110202. [Google Scholar] [CrossRef]
- Hadidi, M.; Boostani, S.; Jafari, S.M. Pea proteins as emerging biopolymers for the emulsification and encapsulation of food bioactives. Food Hydrocoll. 2022, 126, 107474. [Google Scholar] [CrossRef]
- Basak, S.; Singhal, R.S. Inclusion of konjac glucomannan in pea protein hydrogels improved the rheological and in vitro release properties of the composite hydrogels. Int. J. Biol. Macromol. 2024, 257, 128689. [Google Scholar] [CrossRef] [PubMed]
- Başyiğit, B.; Altun, G.; Özaslan, Z.T.; Karaaslan, M. Synthesizing mechanically robust natural pea protein hydrogels via deep cryogenic treatment: State of the art in bioactive compound delivery system. Food Hydrocoll. 2024, 146, 109202. [Google Scholar] [CrossRef]
- Djoullah, A.; Saurel, R. Controlled release of riboflavin encapsulated in pea protein microparticles prepared by emulsion-enzymatic gelation process. J. Food Eng. 2021, 292, 110276. [Google Scholar] [CrossRef]
- Zhang, S.; Han, J.; Chen, L. Fabrication of pea protein gels with modulated rheological properties using high pressure processing. Food Hydrocoll. 2023, 144, 109002. [Google Scholar] [CrossRef]
- Bartkuvienė, I.; Keršienė, M.; Petrikaitė, V.; Leskauskaitė, D. Modulation of pea protein isolate hydrogels by adding kappa-carrageenan: Gelling properties and formation mechanism. Int. J. Food Sci. Technol. 2024, 59, 6598–6610. [Google Scholar] [CrossRef]
- Shewry, P. Wheat grain proteins: Past, present and future. Cereal Chem. 2023, 100, 9–22. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Yang, Y.; Zhang, R.; Jiao, A.; Jin, Z. Construction of transglutaminase covalently cross-linked hydrogel and high internal phase emulsion gel from pea protein modified by high-intensity ultrasound. J. Sci. Food Agric. 2023, 103, 1874–1884. [Google Scholar] [CrossRef]
- Zhu, Y.; Han, Y.; Peng, S.; Chen, X.; Xie, Y.; Liang, R.; Zou, L. Hydrogels assembled from hybrid of whey protein amyloid fibrils and gliadin nanoparticles for curcumin loading: Microstructure, tunable viscoelasticity, and stability. Front. Nutr. 2022, 9, 994740. [Google Scholar] [CrossRef]
- Li, Z.; Liu, P.; Chen, S.; Liu, S.; Yu, Y.; Pan, W.; Li, T.; Tang, N.; Fang, Y. High-Strength, Freeze-Resistant, Recyclable, and Biodegradable Polyvinyl Alcohol/Glycol/Wheat Protein Complex Organohydrogel for Wearable Sensing Devices. Biomacromolecules 2023, 24, 3557–3567. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, R.; Ma, M.; Yang, T.; Sun, Q.; Li, M. Versatile wheat gluten: Functional properties and application in the food-related industry. Crit. Rev. Food Sci. Nutr. 2023, 63, 10444–10460. [Google Scholar] [CrossRef]
- Cao, J.; Fan, G.; Lu, B. Exploring the self-assembly mechanisms of wheat gluten polypeptide hydrogels: Synthesis and characterization. J. Food Eng. 2025, 387, 112351. [Google Scholar] [CrossRef]
- Cui, X.-R.; Wang, Y.-S.; Chen, Y.; Mu, H.-Y.; Chen, H.-H. Effects of wheat protein on hot-extrusion 3D-printing performance and the release behaviours of caffeic acid-loaded wheat starch. Int. J. Biol. Macromol. 2024, 258, 129097. [Google Scholar] [CrossRef]
- Soliman, B.G.; Nguyen, A.K.; Gooding, J.J.; Kilian, K.A. Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry. Adv. Mater. 2024, 36, e2404235. [Google Scholar] [CrossRef]
- Li, Z.; Qin, R.; Xue, J.; Lin, C.; Jiang, L. Chitosan-Based Hydrogel Beads: Developments, Applications, and Challenges. Polymers 2025, 17, 920. [Google Scholar] [CrossRef]
- Taokaew, S.; Kaewkong, W.; Kriangkrai, W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023, 9, 277. [Google Scholar] [CrossRef]
- Farasati Far, B.; Omrani, M.; Naimi Jamal, M.R.; Javanshir, S. Multi-responsive chitosan-based hydrogels for controlled release of vincristine. Commun. Chem. 2023, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Kruczkowska, W.; Kłosiński, K.K.; Grabowska, K.H.; Gałęziewska, J.; Gromek, P.; Kciuk, M.; Kałuzińska-Kołat, Ż.; Kołat, D.; Wach, R.A. Medical Applications and Cellular Mechanisms of Action of Carboxymethyl Chitosan Hydrogels. Molecules 2024, 29, 4360. [Google Scholar] [CrossRef] [PubMed]
- Ristić, I.; Nikolić, L.; Cakić, S.; Nikolić, V.; Tanasić, J.; Zvezdanović, J.; Krstić, M. Eco-Friendly Microwave Synthesis of Sodium Alginate-Chitosan Hydrogels for Effective Curcumin Delivery and Controlled Release. Gels 2024, 10, 637. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, M.; Poyraz, S.; Acet, Ö.; Acet, B.Ö.; Karakoç, V.; Odabaşı, M. Chitosan hydrogels: Versatile platforms for drug delivery in cancer treatment, wound dressing, and 3D bioprinting applications. Int. J. Biol. Macromol. 2025, 314, 144367. [Google Scholar] [CrossRef]
- Tran, D.L.; Thi, P.L.; Thi, T.T.H.; Park, K.D. Novel enzymatically crosslinked chitosan hydrogels with free-radical-scavenging property and promoted cellular behaviors under hyperglycemia. Prog. Nat. Sci. Mater. Int. 2020, 30, 661–668. [Google Scholar] [CrossRef]
- Akdaşçi, E.; Duman, H.; Eker, F.; Bechelany, M.; Karav, S. Chitosan and Its Nanoparticles: A Multifaceted Approach to Antibacterial Applications. Nanomaterials 2025, 15, 126. [Google Scholar] [CrossRef]
- Wei, L.; Tan, J.; Li, L.; Wang, H.; Liu, S.; Chen, J.; Weng, Y.; Liu, T. Chitosan/Alginate Hydrogel Dressing Loaded FGF/VE-Cadherin to Accelerate Full-Thickness Skin Regeneration and More Normal Skin Repairs. Int. J. Mol. Sci. 2022, 23, 1249. [Google Scholar] [CrossRef]
- Flores-Espinoza, A.I.; Garcia-Contreras, R.; Guzman-Rocha, D.A.; Aranda-Herrera, B.; Chavez-Granados, P.A.; Jurado, C.A.; Alfawaz, Y.F.; Alshabib, A. Gelatin–Chitosan Hydrogel Biological, Antimicrobial and Mechanical Properties for Dental Applications. Biomimetics 2023, 8, 575. [Google Scholar] [CrossRef]
- Mathew, S.A.; Arumainathan, S. Crosslinked Chitosan–Gelatin Biocompatible Nanocomposite as a Neuro Drug Carrier. ACS Omega 2022, 7, 18732–18744. [Google Scholar] [CrossRef]
- Nawaz, A.; Ullah, S.; Alnuwaiser, M.A.; Rehman, F.U.; Selim, S.; Al Jaouni, S.K.; Farid, A. Formulation and Evaluation of Chitosan-Gelatin Thermosensitive Hydrogels Containing 5FU-Alginate Nanoparticles for Skin Delivery. Gels 2022, 8, 537. [Google Scholar] [CrossRef] [PubMed]
- Anees Ur Rehman Qureshi, M.; Arshad, N.; Rasool, A. Graphene oxide reinforced biopolymeric (chitosan) hydrogels for controlled cephradine release. Int. J. Biol. Macromol. 2023, 242, 124948. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, M.; Poursani, E.; Curcio, M.; Cirillo, G.; Salerno, A.; Bolognini, S.; De Filpo, G.; Filippi, S.; Vittorio, O.; Iemma, F.; et al. Evaluating the Efficiency of Chitosan-Graphene Oxide Hybrid Hydrogels as Drug Delivery Systems. Macromol. Mater. Eng. 2023, 308, 2300166. [Google Scholar] [CrossRef]
- Eltahir, S.; Al homsi, R.; Jagal, J.; Ahmed, I.S.; Haider, M. Graphene Oxide/Chitosan Injectable Composite Hydrogel for Controlled Release of Doxorubicin: An Approach for Enhanced Intratumoral Delivery. Nanomaterials 2022, 12, 4261. [Google Scholar] [CrossRef]
- Alven, S.; Aderibigbe, B.A. Chitosan-Based Scaffolds Incorporated with Silver Nanoparticles for the Treatment of Infected Wounds. Pharmaceutics 2024, 16, 327. [Google Scholar] [CrossRef]
- Aldakheel, F.M.; Mohsen, D.; El Sayed, M.M.; Alawam, K.A.; Binshaya, A.S.; Alduraywish, S.A. Silver Nanoparticles Loaded on Chitosan-g-PVA Hydrogel for the Wound-Healing Applications. Molecules 2023, 28, 3241. [Google Scholar] [CrossRef]
- Wei, X.; Liu, C.; Li, Z.; Gu, Z.; Yang, J.; Luo, K. Chitosan-based hydrogel dressings for diabetic wound healing via promoting M2 macrophage-polarization. Carbohydr. Polym. 2024, 331, 121873. [Google Scholar] [CrossRef] [PubMed]
- Kulka, K.; Sionkowska, A. Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 2023, 28, 1817. [Google Scholar] [CrossRef]
- Gholamali, I.; Vu, T.T.; Jo, S.-H.; Park, S.-H.; Lim, K.T. Exploring the Progress of Hyaluronic Acid Hydrogels: Synthesis, Characteristics, and Wide-Ranging Applications. Materials 2024, 17, 2439. [Google Scholar] [CrossRef]
- Petit, N.; Chang, Y.J.; Lobianco, F.A.; Hodgkinson, T.; Browne, S. Hyaluronic acid as a versatile building block for the development of biofunctional hydrogels: In vitro models and preclinical innovations. Mater. Today Bio 2025, 31, 101596. [Google Scholar] [CrossRef]
- Thanh, T.N.; Laowattanatham, N.; Ratanavaraporn, J.; Sereemaspun, A.; Yodmuang, S. Hyaluronic acid crosslinked with alginate hydrogel: A versatile and biocompatible bioink platform for tissue engineering. Eur. Polym. J. 2022, 166, 111027. [Google Scholar] [CrossRef]
- Banigo, A.T.; Konings, I.B.M.; Nauta, L.; Zoetebier, B.; Karperien, M. Synthesis and Engineering of Hyaluronic Acid-Gelatin Hydrogels with Improved Cellular Attachment and Growth. Polymers 2024, 16, 3410. [Google Scholar] [CrossRef]
- Atwal, A.; Dale, T.P.; Snow, M.; Forsyth, N.R.; Davoodi, P. Injectable hydrogels: An emerging therapeutic strategy for cartilage regeneration. Adv. Colloid Interface Sci. 2023, 321, 103030. [Google Scholar] [CrossRef]
- Chang, R.; Zhao, D.; Zhang, C.; Liu, K.; He, Y.; Guan, F.; Yao, M. Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing. Int. J. Biol. Macromol. 2023, 226, 870–884. [Google Scholar] [CrossRef]
- Adamiak, K.; Sionkowska, A. State of Innovation in Alginate-Based Materials. Mar. Drugs 2023, 21, 353. [Google Scholar] [CrossRef]
- Huang, L.; Lei, Y.; Chen, Y.; Hu, X.; Huang, C.; Lin, H. Research progress in application of alginate gel as tumor drug delivery carrier, for tumor localization and 3D tumor cell model. J. Holistic Integr. Pharm. 2024, 5, 174–184. [Google Scholar] [CrossRef]
- Jarrah, R.; Sammak, S.E.; Onyedimma, C.; Ghaith, A.K.; Moinuddin, F.; Bhandarkar, A.R.; Siddiqui, A.; Madigan, N.; Bydon, M. The Role of Alginate Hydrogels as a Potential Treatment Modality for Spinal Cord Injury: A Comprehensive Review of the Literature. Neurospine 2022, 19, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Yang, L.; Wei, D.; Liang, M.; Xu, L.; Zhang, T.; Hu, W.; Zhang, Z.; Zhang, Q. Alginate/polyacrylamide host-guest supramolecular hydrogels with enhanced adhesion. Int. J. Biol. Macromol. 2023, 242, 124885. [Google Scholar] [CrossRef]
- Łabowska, M.B.; Cierluk, K.; Jankowska, A.M.; Kulbacka, J.; Detyna, J.; Michalak, I. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. Materials 2021, 14, 858. [Google Scholar] [CrossRef]
- Lin, X.; Shi, J.; Meng, G.; Pan, Y.; Liu, Z. Effect of graphene oxide on sodium alginate hydrogel as a carrier triggering release of ibuprofen. Int. J. Biol. Macromol. 2024, 260, 129515. [Google Scholar] [CrossRef]
- Madaninasab, P.; Mohammadi, M.; Labbaf, S. Electroconductive Gelatin/Alginate/Graphene Hydrogel-Based Scaffold for Neural Tissue Repair. Macromol. Mater. Eng. 2024, 310, 2400229. [Google Scholar] [CrossRef]
- Yan, Y.; Ren, P.; Wu, Q.; Zhang, T. Precise Design of Alginate Hydrogels Crosslinked with Microgels for Diabetic Wound Healing. Biomolecules 2022, 12, 1582. [Google Scholar] [CrossRef]
- Saadinam, F.; Azami, M.; Pedram, M.S.; Sadeghinezhad, J.; Jabbari Fakhr, M.; Salimi, A.; Aminianfar, H.; Molazem, M.; Mokhber Dezfouli, M.R.; Dehghan, M.M. Injectable alginate chitosan hydrogel as a promising bioengineered therapy for acute spinal cord injury. Sci. Rep. 2024, 14, 26747. [Google Scholar] [CrossRef]
- Pournaki, S.K.; Aleman, R.S.; Hasani-Azhdari, M.; Marcia, J.; Yadav, A.; Moncada, M. Current Review: Alginate in the Food Applications. J 2024, 7, 281–301. [Google Scholar] [CrossRef]
- Jang, E.J.; Patel, R.; Sankpal, N.V.; Bouchard, L.-S.; Patel, M. Alginate, hyaluronic acid, and chitosan-based 3D printing hydrogel for cartilage tissue regeneration. Eur. Polym. J. 2024, 202, 112651. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, F.; Liu, J.; Wang, C.; Liu, Y. Enzyme-mediated hydrogelation for biomedical applications: A review. Int. J. Biol. Macromol. 2025, 311, 143379. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, Y.; Amin, F.; Usman, Y.; Sarfraz, M.F. Alginate-Based hydrogels with inorganic Nanomaterials: A promising approach for wound healing and bone tissue regeneration. Eur. Polym. J. 2024, 212, 113057. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y. Advancements in Injectable Hydrogels for Controlled Insulin Delivery: A Comprehensive Review of the Design, Properties and Therapeutic Applications for Diabetes and Its Complications. Polymers 2025, 17, 780. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, X.; Wang, Y.; Chen, W.; Zhu, Z.; Wang, S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int. J. Biol. Macromol. 2025, 285, 138098. [Google Scholar] [CrossRef]
- Mirzaei, A.; Esmkhani, M.; Zallaghi, M.; Nezafat, Z.; Javanshir, S. Biomedical and Environmental Applications of Carrageenan-Based Hydrogels: A Review. J. Polym. Environ. 2023, 31, 1679–1705. [Google Scholar] [CrossRef]
- Avallone, P.R.; Russo Spena, S.; Acierno, S.; Esposito, M.G.; Sarrica, A.; Delmonte, M.; Pasquino, R.; Grizzuti, N. Thermorheological Behavior of κ-Carrageenan Hydrogels Modified with Xanthan Gum. Fluids 2023, 8, 119. [Google Scholar] [CrossRef]
- Garcia, V.S.; Gugliotta, L.M.; Gutierrez, C.G.; Gonzalez, V.D.G. κ-Carrageenan Hydrogels as a Sustainable Alternative for Controlled Release of New Biodegradable Molecules with Antimicrobial Activities. J. Polym. Environ. 2024, 32, 3795–3809. [Google Scholar] [CrossRef]
- Makshakova, O.N.; Bogdanova, L.R.; Makarova, A.O.; Kusova, A.M.; Ermakova, E.A.; Kazantseva, M.A.; Zuev, Y.F. κ-Carrageenan Hydrogel as a Matrix for Therapeutic Enzyme Immobilization. Polymers 2022, 14, 4071. [Google Scholar] [CrossRef]
- Saramas, T.; Sakunpongpitiporn, P.; Rotjanasuworapong, K.; Morarad, R.; Niamlang, S.; Sirivat, A. Metformin delivery via iontophoresis based on κ-carrageenan cryogels. Int. J. Biol. Macromol. 2022, 223, 702–712. [Google Scholar] [CrossRef]
- Anees Ur Rehman Qureshi, M.; Arshad, N.; Rasool, A.; Janjua, N.K.; Butt, M.S.; Naqeeb Ur Rehman Qureshi, M.; Ismail, H. Kappa-carrageenan and sodium alginate-based pH-responsive hydrogels for controlled release of methotrexate. R. Soc. Open Sci. 2024, 11, 231952. [Google Scholar] [CrossRef]
- Bajpai, D.; Kaarthikeyan, G. Development and Evaluation of Alginate- and Carrageenan-Incorporated Scaffold for Bone Regeneration: An In Vitro Study. Cureus 2024, 16, e61139. [Google Scholar] [CrossRef] [PubMed]
- Neamtu, B.; Barbu, A.; Negrea, M.O.; Berghea-Neamţu, C.Ş.; Popescu, D.; Zăhan, M.; Mireşan, V. Carrageenan-Based Compounds as Wound Healing Materials. Int. J. Mol. Sci. 2022, 23, 9117. [Google Scholar] [CrossRef]
- Kundu, R.; Mahada, P.; Chhirang, B.; Das, B. Cellulose hydrogels: Green and sustainable soft biomaterials. Curr. Res. Green Sustain. Chem. 2022, 5, 100252. [Google Scholar] [CrossRef]
- Bao, Y.; He, J.; Song, K.; Guo, J.; Zhou, X.; Liu, S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers 2022, 14, 769. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Xuan, Y.; Zhang, S. Synthesis and Applications of Carboxymethyl Cellulose Hydrogels. Gels 2022, 8, 529. [Google Scholar] [CrossRef]
- Pan, P.; Svirskis, D.; Waterhouse, G.I.N.; Wu, Z. Hydroxypropyl Methylcellulose Bioadhesive Hydrogels for Topical Application and Sustained Drug Release: The Effect of Polyvinylpyrrolidone on the Physicomechanical Properties of Hydrogel. Pharmaceutics 2023, 15, 2360. [Google Scholar] [CrossRef]
- Tamo, A.K. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J. Mater. Chem. B 2024, 12, 7692–7759. [Google Scholar] [CrossRef]
- Lv, X.; Huang, Y.; Hu, M.; Wang, Y.; Dai, D.; Ma, L.; Zhang, Y.; Dai, H. Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. Int. J. Biol. Macromol. 2024, 277, 134015. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Gao, S.; Wu, S. Sustainable and Efficient Wastewater Treatment Using Cellulose-Based Hydrogels: A Review of Heavy Metal, Dye, and Micropollutant Removal Applications. Separations 2025, 12, 72. [Google Scholar] [CrossRef]
- Koshenaj, K.; Ferrari, G. A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks. Polymers 2024, 16, 1991. [Google Scholar] [CrossRef]
- Mukherjee, K.; Dutta, P.; Badwaik, H.R.; Giri, T.K. Chapter 6—Xanthan gum and its composite-based hydrogels. In Polysaccharide Hydrogels for Drug Delivery and Regenerative Medicine; Giri, T.K., Ghosh, B., Badwaik, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 89–108. [Google Scholar] [CrossRef]
- Luanda, A.; Badalamoole, V. Past, present and future of biomedical applications of dextran-based hydrogels: A review. Int. J. Biol. Macromol. 2023, 228, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Zang, C.; Tian, Y.; Tang, Y.; Tang, M.; Yang, D.; Chen, F.; Ghaffarlou, M.; Tu, Y.; Ashrafizadeh, M.; Li, Y. Hydrogel-based platforms for site-specific doxorubicin release in cancer therapy. J. Transl. Med. 2024, 22, 879. [Google Scholar] [CrossRef] [PubMed]
- Darmau, B.; Hoang, A.; Gross, A.J.; Texier, I. Water-based synthesis of dextran-methacrylate and its use to design hydrogels for biomedical applications. Eur. Polym. J. 2024, 221, 113515. [Google Scholar] [CrossRef]
- Elangwe, C.N.; Morozkina, S.N.; Olekhnovich, R.O.; Polyakova, V.O.; Krasichkov, A.; Yablonskiy, P.K.; Uspenskaya, M.V. Pullulan-Based Hydrogels in Wound Healing and Skin Tissue Engineering Applications: A Review. Int. J. Mol. Sci. 2023, 24, 4962. [Google Scholar] [CrossRef]
- Kaith, A.; Garg, U.; Jain, N.; Pandey, M.; Kaul, S.; Gorain, B.; Amin, M.C.I.M. Pullulan as a sustained release carrier for ocular drug delivery: A review. Int. J. Biol. Macromol. 2025, 309, 143146. [Google Scholar] [CrossRef]
- Kaur, N.; Choudhary, P.; Jaiswal, A.K. Recent progress in bioactive loaded hydrogels for food applications. J. Agric. Food Res. 2025, 20, 101756. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, X.; Liu, J.; Zhang, H.; Fu, D. Advances in the application of natural/synthetic hybrid hydrogels in tissue engineering and delivery systems: A comprehensive review. Int. J. Pharm. 2025, 672, 125323. [Google Scholar] [CrossRef]
- Priya, A.S.; Premanand, R.; Ragupathi, I.; Bhaviripudi, V.R.; Aepuru, R.; Kannan, K.; Shanmugaraj, K. Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications. J. Compos. Sci. 2024, 8, 457. [Google Scholar] [CrossRef]
- Rahman Khan, M.M.; Rumon, M.M.H. Synthesis of PVA-Based Hydrogels for Biomedical Applications: Recent Trends and Advances. Gels 2025, 11, 88. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, Q.; Yu, H.; Shao, L.; Cui, X.; Pang, Q.; Zhu, Y.; Hou, R. Construction methods and biomedical applications of PVA-based hydrogels. Front. Chem. 2024, 12, 1376799. [Google Scholar] [CrossRef]
- Liang, X.; Zhong, H.-J.; Ding, H.; Yu, B.; Ma, X.; Liu, X.; Chong, C.-M.; He, J. Polyvinyl Alcohol (PVA)-Based Hydrogels: Recent Progress in Fabrication, Properties, and Multifunctional Applications. Polymers 2024, 16, 2755. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.N.; Meleiro, L.A.D.C.; Quilty, B.; McGuinness, G.B. Release of natural extracts from PVA and PVA-CMC hydrogel wound dressings: A power law swelling/delivery. Front. Bioeng. Biotechnol. 2024, 12, 1406336. [Google Scholar] [CrossRef] [PubMed]
- Khanderao, G.J.; Kubde, J.A.; Hatwar, P.R.; Bakal, R.L.; Karule, V.G. A review article on pH-sensitive hydrogel. GSC Biol. Pharm. Sci. 2024, 29, 69–81. [Google Scholar] [CrossRef]
- Tan, G.; Xu, J.; Yu, Q.; Zhang, J.; Hu, X.; Sun, C.; Zhang, H. Photo-Crosslinkable Hydrogels for 3D Bioprinting in the Repair of Osteochondral Defects: A Review of Present Applications and Future Perspectives. Micromachines 2022, 13, 1038. [Google Scholar] [CrossRef]
- Yao, S.; Yan, H.; Tian, S.; Luo, R.; Zhao, Y.; Wang, J. Anti-fouling coatings for blood-contacting devices. Smart Mater. Med. 2024, 5, 166–180. [Google Scholar] [CrossRef]
- Hashemi-Afzal, F.; Fallahi, H.; Bagheri, F.; Collins, M.N.; Eslaminejad, M.B.; Seitz, H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact. Mater. 2024, 43, 1–31. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, Z.; Xiang, S.; Yan, H.; Tian, H. Degradation of Polymer Materials in the Environment and Its Impact on the Health of Experimental Animals: A Review. Polymers 2024, 16, 2807. [Google Scholar] [CrossRef]
- Ahmad, Z.; Salman, S.; Khan, S.A.; Amin, A.; Rahman, Z.U.; Al-Ghamdi, Y.O.; Akhtar, K.; Bakhsh, E.M.; Khan, S.B. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022, 8, 167. [Google Scholar] [CrossRef]
- Rasekh, M.; Arshad, M.S.; Ahmad, Z. Advances in Drug Delivery Integrated with Regenerative Medicine: Innovations, Challenges, and Future Frontiers. Pharmaceutics 2025, 17, 456. [Google Scholar] [CrossRef]
- Aftab, M.; Ikram, S.; Ullah, M.; Khan, N.; Naeem, M.; Khan, M.A.; Bakhtiyor o’g’li, R.B.; Qizi, K.S.S.; Erkinjon Ugli, O.O.; Abdurasulovna, B.M.; et al. Recent Trends and Future Directions in 3D Printing of Biocompatible Polymers. J. Manuf. Mater. Process. 2025, 9, 129. [Google Scholar] [CrossRef]
- Ali, K.; Asad, Z.; Agbna, G.H.D.; Saud, A.; Khan, A.; Zaidi, S.J. Progress and Innovations in Hydrogels for Sustainable Agriculture. Agronomy 2024, 14, 2815. [Google Scholar] [CrossRef]
- Harun-Ur-Rashid, M.; Imran, A.B. Emerging Trends in Engineering Polymers: A Paradigm Shift in Material Engineering. Recent Prog. Mater. 2024, 6, 024. [Google Scholar] [CrossRef]
- Eufrásio-da-Silva, T.; Erezuma, I.; Dolatshahi-Pirouz, A.; Orive, G. Enhancing regenerative medicine with self-healing hydrogels: A solution for tissue repair and advanced cyborganic healthcare devices. Biomater. Adv. 2024, 161, 213869. [Google Scholar] [CrossRef]
- Isaac, A.H.; Recalde Phillips, S.Y.; Ruben, E.; Estes, M.; Rajavel, V.; Baig, T.; Paleti, C.; Landsgaard, K.; Lee, R.H.; Guda, T.; et al. Impact of PEG sensitization on the efficacy of PEG hydrogel-mediated tissue engineering. Nat. Commun. 2024, 15, 3283. [Google Scholar] [CrossRef]
- Gandin, A.; Torresan, V.; Panciera, T.; Brusatin, G. A Scalable Method to Fabricate 2D Hydrogel Substrates for Mechanobiology Studies with Independent Tuning of Adhesiveness and Stiffness. Methods Protoc. 2024, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Gideon, O.; Samuel, H.S.; Okino, I.A. Biocompatible materials for next-generation biosensors. Discov. Chem. 2024, 1, 34. [Google Scholar] [CrossRef]
- Safarkhani, M.; Aldhaher, A.; Heidari, G.; Zare, E.N.; Warkiani, M.E.; Akhavan, O.; Huh, Y.S.; Rabiee, N. Nanomaterial-assisted wearable glucose biosensors for noninvasive real-time monitoring: Pioneering point-of-care and beyond. Nano Mater. Sci. 2024, 6, 263–283. [Google Scholar] [CrossRef]
- Parvin, N.; Kumar, V.; Joo, S.W.; Mandal, T.K. Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review. Materials 2024, 17, 4792. [Google Scholar] [CrossRef]
- Omidian, H.; Chowdhury, S.D.; Wilson, R.L. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 2024, 10, 238. [Google Scholar] [CrossRef]
- Wu, K.Y.; Akbar, D.; Giunta, M.; Kalevar, A.; Tran, S.D. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. Materials 2024, 17, 86. [Google Scholar] [CrossRef]
- Zawidlak-Węgrzyńska, B.; Rydz, J.; Musioł, M.; Radziwon-Balicka, A. Polymer-Drug Anti-Thrombogenic and Hemocompatible Coatings as Surface Modifications. Pharmaceutics 2024, 16, 432. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, K.; Zheng, X.; Liu, Q.; Han, Y.; Liu, Z. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater. Today Bio 2024, 26, 101082. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Villa, C. Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics 2019, 11, 671. [Google Scholar] [CrossRef] [PubMed]
- Tuszynska, M.; Skopinska-Wisniewska, J.; Bartniak, M.; Bajek, A. Conceptualization and Preliminary Characterization of Poloxamer-Based Hydrogels for Biomedical Applications. Bioconjug. Chem. 2025, 36, 1169–1179. [Google Scholar] [CrossRef]
- Pourbakhsh, M.; Jabraili, M.; Akbari, M.; Jaymand, M.; Esfahlan, R.J. Poloxamer-based drug delivery systems: Frontiers for treatment of solid tumors. Mater. Today Bio 2025, 32, 101727. [Google Scholar] [CrossRef]
- Li, J.; Chu, M.K.; Lu, B.; Mirzaie, S.; Chen, K.; Gordijo, C.R.; Plettenburg, O.; Giacca, A.; Wu, X.Y. Enhancing thermal stability of a highly concentrated insulin formulation with Pluronic F-127 for long-term use in microfabricated implantable devices. Drug Deliv. Transl. Res. 2017, 7, 529–543. [Google Scholar] [CrossRef]
- Nugraha, D.H.; Anggadiredja, K.; Rachmawati, H. Mini-Review of Poloxamer as a Biocompatible Polymer for Advanced Drug Delivery. Braz. J. Pharm. Sci. 2022, 58, e21125. [Google Scholar] [CrossRef]
- Cui, N.; Dai, C.-Y.; Mao, X.; Lv, X.; Gu, Y.; Lee, E.-S.; Jiang, H.-B.; Sun, Y. Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review. Gels 2022, 8, 360. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Wang, Z.; Liu, H.; Cui, Y.; Liu, Y.; Ren, M.; Zhan, H.; Li, Z.; Wu, M.; et al. Incorporation of Bone Morphogenetic Protein-2 and Osteoprotegerin in 3D-Printed Ti6Al4V Scaffolds Enhances Osseointegration Under Osteoporotic Conditions. Front. Bioeng. Biotechnol. 2021, 9, 754205. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, H.; Xu, M.; Li, L.; Wu, M.; Zhang, S.; Liu, X.; Xia, W.; Xu, K.; Xiao, J.; et al. Delivery of Basic Fibroblast Growth Factor Through an In Situ Forming Smart Hydrogel Activates Autophagy in Schwann Cells and Improves Facial Nerves Generation via the PAK-1 Signaling Pathway. Front. Pharmacol. 2022, 13, 778680. [Google Scholar] [CrossRef]
- Galocha-León, C.; Antich, C.; Voltes-Martínez, A.; Marchal, J.A.; Mallandrich, M.; Halbaut, L.; Rodríguez-Lagunas, M.J.; Souto, E.B.; Clares-Naveros, B.; Gálvez-Martín, P. Development and characterization of a poloxamer hydrogel composed of human mesenchymal stromal cells (hMSCs) for reepithelization of skin injuries. Int. J. Pharm. 2023, 647, 123535. [Google Scholar] [CrossRef]
- Marques, A.C.; Costa, P.C.; Velho, S.; Amaral, M.H. Injectable Poloxamer Hydrogels for Local Cancer Therapy. Gels 2023, 9, 593. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.; Arbab, A.; Khan, S.; Fatima, H.; Bibi, I.; Chowdhry, N.P.; Ansari, A.Q.; Ursani, A.A.; Kumar, S.; Hussain, J.; et al. Recent progress in thermosensitive hydrogels and their applications in drug delivery area. MedComm Biomater. Appl. 2023, 2, e55. [Google Scholar] [CrossRef]
- Karchoubi, F.; Ghotli, R.A.; Pahlevani, H.; Salehi, M.B. New insights into nanocomposite hydrogels; a review on recent advances in characteristics and applications. Adv. Ind. Eng. Polym. Res. 2024, 7, 54–78. [Google Scholar] [CrossRef]
- Valentino, A.; Yazdanpanah, S.; Conte, R.; Calarco, A.; Peluso, G. Smart Nanocomposite Hydrogels as Next-Generation Therapeutic and Diagnostic Solutions. Gels 2024, 10, 689. [Google Scholar] [CrossRef]
- Xing, W.; Tang, Y. On mechanical properties of nanocomposite hydrogels: Searching for superior properties. Nano Mater. Sci. 2022, 4, 83–96. [Google Scholar] [CrossRef]
- Han, F.; Chen, S.; Wang, F.; Liu, M.; Li, J.; Liu, H.; Yang, Y.; Zhang, H.; Liu, D.; He, R.; et al. High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions. Adv. Sci. 2025, 12, e2412726. [Google Scholar] [CrossRef]
- Thirumalaivasan, N.; Kanagaraj, K.; Nangan, S.; Pothu, R.; Rajendra, S.P.; Karuppiah, P.; Boddula, R. Bioactive Hydrogels (Bio-HyGs): Emerging Trends in Drug Delivery and Wound Healing Applications. Polym. Adv. Technol. 2025, 36, e70132. [Google Scholar] [CrossRef]
- Choudhary, A.; Sharma, A.; Singh, A.; Han, S.S.; Sood, A. Strategy and Advancement in Hybrid Hydrogel and Their Applications: Recent Progress and Trends. Adv. Eng. Mater. 2024, 26, 2400944. [Google Scholar] [CrossRef]
- Babilotte, J.; Martin, B.; Guduric, V.; Bareille, R.; Agniel, R.; Roques, S.; Héroguez, V.; Dussauze, M.; Gaudon, M.; Le Nihouannen, D.; et al. Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111334. [Google Scholar] [CrossRef] [PubMed]
- Farazin, A.; Mahjoubi, S. Dual-functional Hydroxyapatite scaffolds for bone regeneration and precision drug delivery. J. Mech. Behav. Biomed. Mater. 2024, 157, 106661. [Google Scholar] [CrossRef]
- Büyüktiryaki, S. Sensitive and selective detection of cancer biomarkers with molecularly imprinted biosensors. Talanta Open 2025, 11, 100444. [Google Scholar] [CrossRef]
- Sun, S.; Chen, J. Recent advances in hydrogel-based biosensors for cancer detection. ACS Appl. Mater. Interfaces 2024, 16, 46988–47002. [Google Scholar] [CrossRef]
- Kamoun, E.A.; Elsabahy, M.; Mohamed Elbadry, A.M.; Abdelazim, E.B.; Mohsen, A.A.; Aleem, M.A.; Gao, H.; Eissa, N.G.; Elghamry, I.; Salim, S.A. Recent Progress of Polymer-Based Biosensors for Cancer Diagnostic Applications: Natural versus Synthetic Polymers. ACS Omega 2025, 10, 8816–8831. [Google Scholar] [CrossRef]
- Chen, H.; Xu, J.; Sun, J.; Jiang, Y.; Zheng, W.; Hu, W.; Qian, H. Recent advances on thermosensitive hydrogels-mediated precision therapy. Asian J. Pharm. Sci. 2024, 19, 100911. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, J.; Tian, Y.; Su, B.; Zeng, M.; Wu, C.; Wei, D.; Sun, J.; Luo, H.; Fan, H. Temperature-Responsive Hydrogel System Integrating Wound Temperature Monitoring and On-demand Drug Release for Sequentially Inflammatory Process Regulation of Wound Healing. ACS Appl. Mater. Interfaces 2024, 16, 67444–67457. [Google Scholar] [CrossRef] [PubMed]
- Promdontree, P.; Ounkaew, A.; Yao, Y.; Zeng, H.; Narain, R.; Ummartyotin, S. Temperature-Responsive Injectable Composite Hydrogels Based on Poly(N-Isopropylacrylamide), Chitosan, and Hemp-Derived Cellulose Nanocrystals. Polymers 2024, 16, 2984. [Google Scholar] [CrossRef]
- Jiang, J.; Tian, Y.; Wu, X.; Zeng, M.; Wu, C.; Wei, D.; Luo, H.; Sun, J.; Ding, J.; Fan, H. Temperature and light dual-responsive hydrogels for anti-inflammation and wound repair monitoring. J. Mater. Chem B 2025, 13, 2855–2870. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Xu, K. Advancements and Prospects of pH-Responsive Hydrogels in Biomedicine. Gels 2025, 11, 293. [Google Scholar] [CrossRef]
- Patroklou, G.; Triantafyllopoulou, E.; Goula, P.-E.; Karali, V.; Chountoulesi, M.; Valsami, G.; Pispas, S.; Pippa, N. pH-Responsive Hydrogels: Recent Advances in Pharmaceutical Applications. Polymers 2025, 17, 1451. [Google Scholar] [CrossRef]
- Asadi, K.; Samiraninezhad, N.; Akbarizadeh, A.R.; Amini, A.; Gholami, A. Stimuli-responsive hydrogel based on natural polymers for breast cancer. Front. Chem. 2024, 12, 1325204. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, T.; Zhang, H.; Dai, H.; Gao, H.; Feng, W.; Xu, D.; Duan, J. The application of pH-responsive hyaluronic acid-based essential oils hydrogels with enhanced anti-biofilm and wound healing. Int. J. Biol. Macromol. 2024, 275, 133559. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Wang, X.; Zhao, J.; Zhai, X.; Xia, W.; Li, P.; Lai, K.; Wu, L. Preparation and application of enzyme-based hydrogels. Biosens. Bioelectron. X 2025, 23, 100594. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, Y.; Zeng, C.; Pan, W. Ultrafast enzyme-responsive hydrogel for real-time assessment and treatment optimization in infected wounds. J. Nanobiotechnol. 2025, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Vera-González, N.; Deusenbery, C.; LaMastro, V.; Shukla, A. Fungal Enzyme-Responsive Hydrogel Drug Delivery Platform for Triggered Antifungal Release. Adv. Healthc. Mater. 2024, 13, e2401157. [Google Scholar] [CrossRef]
- Sobczak, M. Enzyme-Responsive Hydrogels as Potential Drug Delivery Systems—State of Knowledge and Future Prospects. Int. J. Mol. Sci. 2022, 23, 4421. [Google Scholar] [CrossRef]
- Ma, P.; Da, J.; Zhao, G.; Suo, F.; Li, Y.; Zhou, X.; Li, Y.; Han, Y.; Zou, M.; Dou, X. Injectable Light-Responsive Hydrogel Dressing Promotes Diabetic Wound Healing by Enhancing Wound Angiogenesis and Inhibiting Inflammation. Polymers 2025, 17, 607. [Google Scholar] [CrossRef]
- Nazemidashtarjandi, S.; Larsen, B.; Cheng, K.; Faulkner, S.; Peppas, N.A.; Parekh, S.H.; Zoldan, J. Near-infrared light-responsive hydrogels for on-demand dual delivery of proangiogenic growth factors. Acta Biomater. 2024, 183, 61–73. [Google Scholar] [CrossRef]
- Xing, Y.; Zeng, B.; Yang, W. Light responsive hydrogels for controlled drug delivery. Front. Bioeng. Biotechnol. 2022, 10, 1075670. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, N.; Chattopadhyay, S. Electrically conductive “SMART” hydrogels for on-demand drug delivery. Asian J. Pharm. Sci. 2025, 20, 101007. [Google Scholar] [CrossRef]
- Castrejón-Comas, V.; Mataró, N.; Resina, L.; Zanuy, D.; Nuñez-Aulina, Q.; Sánchez-Morán, J.; Enshaei, H.; Arnau, M.; Muñoz-Galán, H.; Worch, J.C.; et al. Electro-responsive hyaluronic acid-based click-hydrogels for wound healing. Carbohydr. Polym. 2025, 348, 122941. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, N.; Kandalai, S.; Li, H.; Hossain, F.; Zhang, S.; Zhu, J.; Zhang, J.; Cui, J.; Zheng, Q. Dynamic and Wearable Electro-responsive Hydrogel with Robust Mechanical Properties for Drug Release. ACS Appl. Mater. Interfaces 2023, 15, 17113–17122. [Google Scholar] [CrossRef]
- Banerjee, U.; Misra, S.; Mitra, S.K. Magnetic manipulation of liquid-wrapped hydrogels. Soft Matter 2025, 21, 2994–3004. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.; Li, Y.; Xu, X.; Pan, Z.; Li, Y.; Luo, Y.; Sun, L. Three-Dimensional Printable Magnetic Hydrogels with Adjustable Stiffness and Adhesion for Magnetic Actuation and Magnetic Hyperthermia Applications. Gels 2025, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Zhang, G.; Zhan, W.; Wang, J.; Wang, C.; Yue, Q.; Huang, Z.; Wang, Y. Hyaluronidase-responsive hydrogel loaded with magnetic nanoparticles combined with external magnetic stimulation for spinal cord injury repair. Mater. Today Bio 2024, 30, 101378. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Chen, C.; Cheng, Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J. Control. Release 2021, 335, 540–556. [Google Scholar] [CrossRef]
- Bercea, M.; Lupu, A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024, 10, 260. [Google Scholar] [CrossRef]
- Yang, K.; Bo, H.; Ma, D.; Peng, M.; Liu, Q.; Heng, Z.; Gu, Z.; Liu, X.; Chen, S. pH and glucose dual-responsive phenylboronic acid hydrogels for smart insulin delivery. Soft Matter 2024, 20, 8855–8865. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Wang, C.; Yu, F.; Yu, W.; Zhao, Z. A glucose responsive multifunctional hydrogel with antibacterial properties and real-time monitoring for diabetic wound treatment. Biomater. Sci. 2025, 13, 275–286. [Google Scholar] [CrossRef]
- Pal, S.; Rakshit, T.; Saha, S.; Jinagal, D. Glucose-Responsive Materials for Smart Insulin Delivery: From Protein-Based to Protein-Free Design. ACS Mater. Au 2025, 5, 239–252. [Google Scholar] [CrossRef]
- Nanda, D.; Behera, D.; Pattnaik, S.S.; Behera, A.K. Advances in natural polymer-based hydrogels: Synthesis, applications, and future directions in biomedical and environmental fields. Discov. Polym. 2025, 2, 6. [Google Scholar] [CrossRef]
- Mndlovu, H.; Kumar, P.; du Toit, L.C.; Choonara, Y.E. A review of biomaterial degradation assessment approaches employed in the biomedical field. npj Mater. Degrad. 2024, 8, 66. [Google Scholar] [CrossRef]
- Ansar, R.; Saqib, S.; Mukhtar, A.; Niazi, M.B.K.; Shahid, M.; Jahan, Z.; Kakar, S.J.; Uzair, B.; Mubashir, M.; Ullah, S.; et al. Challenges and recent trends with the development of hydrogel fiber for biomedical applications. Chemosphere 2022, 287, 131956. [Google Scholar] [CrossRef]
- Foudazi, R.; Zowada, R.; Manas-Zloczower, I.; Feke, D.L. Porous Hydrogels: Present Challenges and Future Opportunities. Langmuir 2023, 39, 2092–2111. [Google Scholar] [CrossRef]
- Catoira, M.C.; González-Payo, J.; Fusaro, L.; Ramella, M.; Boccafoschi, F. Natural hydrogels R&D process: Technical and regulatory aspects for industrial implementation. J. Mater. Sci. Mater. Med. 2020, 31, 64. [Google Scholar] [CrossRef]
- Elsayed, M.M. Hydrogel Preparation Technologies: Relevance Kinetics, Thermodynamics and Scaling up Aspects. J. Polym. Environ. 2019, 27, 871–891. [Google Scholar] [CrossRef]
- Patel, G.; Patel, S. Chapter 8—Patent and regulatory issues of hydrogel for tissue engineering and regenerative medicine. In Hydrogels for Tissue Engineering and Regenerative Medicine: From Fundamentals to Applications, 1st ed.; Oliveira, J.M., Silva-Correia, J., Reis, R.L., Eds.; Academic Press: London, UK, 2024; pp. 161–178. [Google Scholar] [CrossRef]
- Acciaretti, F.; Vesentini, S.; Cipolla, L. Fabrication Strategies Towards Hydrogels for Biomedical Application: Chemical and Mechanical Insights. Chem. Asian J. 2022, 17, e202200797. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993; Biological Evaluation of Medical Devices. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 13485; Medical Devices—Quality Management System Requirements. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 11137; Sterilization of Health Care Products. International Organization for Standardization: Geneva, Switzerland, 2025.
- ISO 14971; Medical Devices—Application of Risk Management to Medical Devices. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 10993-6; Biological Evaluation of Medical Devices—Part 6: Tests for Local Effects after Implantation. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 10993-10; Biological Evaluation of Medical Devices—Part 10: Tests for Skin Sensitization. International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 10993-11; Biological Evaluation of Medical Devices—Part 11: Tests for Systemic Toxicity. International Organization for Standardization: Geneva, Switzerland, 2017.
Hydrogel | Young’s Modulus (MPa) | Tensile Strength (MPa) | Swelling Ratio (% g/g) | Gelation Time at 37 °C (min) | In Vitro Degradation Time (Days) | Porosity (%) |
---|---|---|---|---|---|---|
collagen | 0.001–0.1 | 0.01–0.15 | 1000–3000 | 30–60 | 7–30 | 70–95 |
gelatin | 0.01–0.1 | 0.05–0.3 | 500–1500 | 5–15 | 5–20 | 70–90 |
fibrin | 0.0005–0.005 | 0.001–0.01 | 900–1200 | 5–10 | 2–7 | 80–95 |
albumin | 0.001–0.06 | 0.01–0.05 | 400–800 | 5–20 | 5–15 | 60–80 |
silk fibroin | 0.5–5 | 0.5–2 | 200–600 | 15–30 | 20–60 | 60–85 |
sericin | 0.005–0.03 | 0.005–0.02 | 800–1500 | 8–10 | 3–10 | 70–90 |
SPI | 0.1–0.6 | 0.1–0.4 | 300–800 | 20–30 | 10–25 | 60–85 |
pea protein | 0.005–0.3 | 0.05–0.2 | 200–600 | 20–40 | 7–15 | 60–80 |
wheat gluten | 0.3–1.5 | 0.2–0.8 | 100–400 | 30–60 | 15–40 | 50–75 |
chitin | 0.1–0.5 | 0.1–0.4 | 100–300 | N/A | 20–60 | 50–80 |
chitosan | 0.01–0.5 | 0.05–0.2 | 300–800 | 5–20 | 7–30 | 60–90 |
HA | 0.001–0.1 | 0.02–0.1 | 500–1000 | 5–10 | 3–14 | 70–95 |
alginate | 0.02–0.1 (Ca2+ gel) | 0.03–0.2 | 700–1500 | 1–5 (Ca2+ gel) | 5–14 | 70–90 |
carrageenan | 0.001–0.1 | 0.01–0.8 | 600–1200 | 5–10 | 5–20 | 65–85 |
cellulose | 0.1–2 | 0.2–5 | 100–400 | 15–30 | 10–60 | 60–90 |
starch | 0.1–0.8 | 0.1–1 | 200–600 | 20–40 | 5–20 | 50–80 |
xanthan gum | 0.01–0.2 | 0.05–0.3 | 800–2000 | 3–4 | 7–15 | 60–85 |
dextran | 0.002–0.3 | 0.1–0.4 | 300–700 | 5–10 | 5–21 | 60–90 |
pullulan | 0.01–0.1 | 0.05–0.2 | 400–1000 | 5–15 | 7–14 | 60–85 |
Hydrogel | Advantages | Limitations | Key Applications |
---|---|---|---|
collagen |
|
|
|
gelatin |
|
|
|
fibrin |
|
|
|
albumin |
|
|
|
silk fibroin |
|
|
|
sericin |
|
|
|
SPI |
|
|
|
pea protein |
|
|
|
wheat gluten |
|
|
|
chitin |
|
|
|
chitosan |
|
|
|
HA |
|
|
|
alginate |
|
|
|
carrageenan |
|
|
|
cellulose |
|
|
|
starch |
|
|
|
xanthan gum |
|
|
|
dextran |
|
|
|
pullulan |
|
|
|
Hydrogel | Young’s Modulus (MPa) | Tensile Strength (MPa) | Swelling Ratio (% g/g) | Gelation Time at 37 °C (min) | In Vitro Degradation Time (Days) | Porosity (%) |
---|---|---|---|---|---|---|
PAAm | 0.01–0.5 | 0.1–0.5 | 500–1500 | 5–15 | ND (native form) | 60–90 |
PEG | 0.1–0.3 | 0.05–0.3 | 100–600 | 1–10 | ND (unless modified) | 60–90 |
PVA | 0.1–0.8 | 0.2–1 | 200–400 | 15–30 | PD | 60–85 |
PAA | 0.05–0.5 | 0.1–0.5 | 1000–3000 | 10–20 | Variable * | 60–90 |
Poloxamer (Pluronic F127) | 0.001–0.15 | 0.01–0.1 | 500–1200 | 2–5 | PD | 70–95 |
PNIPAAm | 0.01–0.3 | 0.01–0.1 | 500–1500 | 1–5 | ND ** | 60–90 |
PLA | 100–1000 (solid) | 20–60 (solid) | <100 | N/A | 30–180 | 30–70 |
PLGA | 1–100 (bulk form) | 5–50 | <100 | N/A | 7–60 | 30–80 |
PU | 0.1–10 | 0.1–25 | 200–600 | 5–30 | Variable * | 50–90 |
Hydrogel | Advantages | Limitations | Key Applications |
---|---|---|---|
PAAm |
|
|
|
PEG |
|
|
|
PVA |
|
|
|
PAA |
|
|
|
Poloxamer (Pluronic F127) |
|
|
|
PNIPAAm |
|
|
|
PLA |
|
|
|
PLGA |
|
|
|
PU |
|
|
|
Hydrogel | Young’s Modulus (MPa) | Tensile Strength (MPa) | Swelling Ratio (% g/g) | Gelation Time at 37 °C (min) | In Vitro Degradation Time (Days) | Porosity (%) |
---|---|---|---|---|---|---|
Collagen–PCL | 1–5 | 1–3 | <100 | N/A | 30–90 | 60–75 |
Gelatin–PVA | 0.05–0.3 | 0.02–0.1 | 500–1000 | 10–20 | 15–30 | 70–90 |
GelMA | 0.01–0.05 | 0.005–0.02 | 200–500 | 2–3 (UV) | 10–20 | 60–90 |
Silk fibroin– gelatin | 0.5–2 | 0.8–1.5 | 400–700 | 10–20 | 20–40 | 60–85 |
Chitosan–PEGDA | 0.2–1.5 | 0.5–1.2 | 100–300 | 5–10 | 7–21 | 60–85 |
Chitosan– Pluronic F127 | 0.05–0.15 | 0.02–0.08 | 300–600 | 2–5 | 10–20 | 70–90 |
HA–PEG | 0.03–0.1 | 0.02–0.08 | 200–400 | 2–3 | 10–20 | 70–80 |
Alginate– gelatin | 0.02–0.1 | 0.01–0.08 | 800–1200 | 3–5 | 5–14 | 75–90 |
Alginate–PVA | 0.03–0.2 | 0.01–0.06 | 500–900 | 10–15 | 10–25 | 70–85 |
PVA–starch | 0.2–0.5 | 0.1–0.3 | 200–400 | 15–30 | 15–30 | 50–80 |
Hydrogel | Advantages | Limitations | Key Applications |
---|---|---|---|
Collagen–PCL |
|
|
|
Gelatin–PVA |
|
|
|
GelMA |
|
|
|
Silk fibroin– gelatin |
|
|
|
Chitosan– PEGDA |
|
|
|
Chitosan– Pluronic F127 |
|
|
|
HA–PEG |
|
|
|
Alginate– gelatin |
|
|
|
Alginate–PVA |
|
|
|
PVA–starch |
|
|
|
Synthetic Material | Degradation Byproducts | Toxicity |
---|---|---|
PAAm | acrylamide (if unreacted) | neurotoxic, carcinogenic (group 2A IARC) |
PEG | ethylene glycol (incomplete degradation) | toxic at high doses (renal failure) |
PNIPAAm | isopropylacrylamide derivatives | cytotoxic at high levels |
pHEMA | methacrylic acid and its ester derivatives | low acute toxicity (prolonged exposure may irritate tissues) |
Crosslinkers (e.g., GAD) | aldehydes, epoxides | cytotoxic and sensitizing |
Properties/Limitations | Natural Hydrogels | Synthetic Hydrogels |
---|---|---|
biocompatibility | excellent | good to excellent (polymer-dependent) |
biodegradability | often too fast (enzyme-mediated) | often not biodegradable (unless engineered) |
biological activity | high | low (unless functionalized) |
mechanical strength | poor to moderate | moderate to excellent |
reproducibility | variable (source-dependent) | high (chemically defined) |
endotoxins | high risk (especially from animal-derived materials) | low risk |
immunogenicity | high risk for animal proteins (e.g., bovine collagen) | low risk (unless impurities remain) |
long-term safety | often untested for synthetic degradation products | PEG byproducts (ethylene glycol) may be toxic |
sterilization compatibility | poor | moderate |
crosslinking scalability | often non-uniform (enzyme, ionic, pH methods) | UV light or click chemistry (expensive) |
shelf-life stability | short (weeks to months) | moderate (months to years) |
batch consistency | low | high |
regulatory risk | high (pathogens, endotoxins) | moderate |
cost | moderate to high (due to extraction and purification) | moderate to high (GMP polymers mainly) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segneanu, A.-E.; Bejenaru, L.E.; Bejenaru, C.; Blendea, A.; Mogoşanu, G.D.; Biţă, A.; Boia, E.R. Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications. Polymers 2025, 17, 2026. https://doi.org/10.3390/polym17152026
Segneanu A-E, Bejenaru LE, Bejenaru C, Blendea A, Mogoşanu GD, Biţă A, Boia ER. Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications. Polymers. 2025; 17(15):2026. https://doi.org/10.3390/polym17152026
Chicago/Turabian StyleSegneanu, Adina-Elena, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă, and Eugen Radu Boia. 2025. "Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications" Polymers 17, no. 15: 2026. https://doi.org/10.3390/polym17152026
APA StyleSegneanu, A.-E., Bejenaru, L. E., Bejenaru, C., Blendea, A., Mogoşanu, G. D., Biţă, A., & Boia, E. R. (2025). Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications. Polymers, 17(15), 2026. https://doi.org/10.3390/polym17152026