Convenient Preparation of PEDOT-Based Conductive Fabrics via a Green Strategy for Morse Code Recognition
Abstract
1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Biocatalytic Preparation of PEDOT:PSS Conductive Finishing Solution
2.3. Preparation of PEDOT:PSS Nonwoven Fabric and Assemble Devices
2.4. Characterization
2.5. Electrical Property, Signal Monitoring, and Transmission Measurement
2.6. Pressure Sensor Assembly and Mechanism
2.7. Temperature Sensor Assembly and Mechanism
3. Results and Discussion
3.1. Chemical Structure of the PEDOT:PSS and Modified Nonwoven Fabric
3.2. Surface Morphology and Composition of the PEDOT:PSS Modified Nonwoven Fabric
3.3. Electrical Properties of the PEDOT:PSS Modified Nonwoven Fabric
3.4. Morse Code Recognition in Piezoresistive Mode
3.5. Thermoelectric Performance
3.6. Morse Code Recognition in Thermoelectric Mode
3.7. Morse Code Recognition in Collaborative Mode
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kayser, L.V.; Lipomi, D.J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Yuk, H.; Lu, B.Y.; Zhao, X.H. Strong adhesion of wet conducting polymers on diverse substrates. Sci. Adv. 2020, 6, eaay5394. [Google Scholar] [CrossRef] [PubMed]
- Li, W.G.; Li, Z.; Bertelsmann, K.; Fan, D.E. Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv. Mater. 2019, 31, 1900720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.S.; Baima, M.; Andrew, T.L. Transforming commercial textiles and threads into sewable and weavable electric heaters. ACS Appl. Mater. Interfaces 2017, 9, 32299–32307. [Google Scholar] [CrossRef]
- Promsuwan, K.; Meng, L.G.; Suklim, P.; Limbut, W.; Thavarungkul, P.; Kanatharana, P.; Mak, W.C. Bio-PEDOT: Modulating carboxyl moieties in poly(3,4-ethylenedioxythiophene) for enzyme-coupled bioelectronic interfaces. ACS Appl. Mater. Interfaces 2020, 12, 39841–39849. [Google Scholar] [CrossRef]
- Zhang, X.F.; Li, T.T.; Jiang, Q.; Wu, L.W.; Re, H.T.; Peng, H.K.; Shiu, B.C.; Wang, Y.T.; Lou, C.W.; Lin, J.H. Worm-Like PEDOT:Tos coated polypropylene fabrics via low-temperature interfacial polymerization for high-efficiency thermoelectric textile. Prog. Org. Coat. 2020, 149, 105919. [Google Scholar] [CrossRef]
- Alamer, F.A.; Badawi, N.M.; Alodhayb, A.; Okasha, R.M.; Kattan, N.A. Effect of dopant on the conductivity and stability of three different cotton fabrics impregnated with PEDOT:PSS. Cellulose 2020, 27, 531–543. [Google Scholar] [CrossRef]
- Tissera, N.D.; Wijesena, R.N.; Rathnayake, S.; Silva, R.; Silva, K. Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: Improved electrical conductivity, electrical switching, and tuning properties. Carbohydr. Polym. 2018, 186, 35–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, X.; Wang, Q.; Cavaco-Paulo, A. Preparation of functionalized cotton based on laccase-catalyzed synthesis of polyaniline in perfluorooctanesulfonate acid potassium salt (PFOS) template. RSC Adv. 2016, 6, 49272. [Google Scholar] [CrossRef]
- Wang, B.; Yang, K.; Cheng, H.; Ye, T.; Wang, C. A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor. Chem. Eng. J. 2021, 404, 126393. [Google Scholar] [CrossRef]
- Mule, A.; Dudem, B.; Patnam, H.; Graham, S.; Yu, J.S. Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics. ACS Sustain. Chem. Eng. 2019, 7, 16450–16458. [Google Scholar] [CrossRef]
- Cui, Y.F.; He, X.Y.; Liu, W.D.; Zhu, S.Y.; Zhou, M.; Wang, Q. Highly Stretchable, Sensitive, and Multifunctional Thermoelectric Fabric for Synergistic-Sensing Systems of Human Signal Monitoring. Adv. Fiber Mater. 2024, 6, 170–180. [Google Scholar] [CrossRef]
- Cui, Y.F.; Zheng, G.L.; Jiang, Z.; Zhou, M.; Wang, P.; Yu, Y.Y.; Wang, Q. Preparation of fabric-based electronic device via surface topological modification and enzymatic polymerization for personal thermal management, subtle motion detection, and ultraviolet protection. Compos. Sci. Technol. 2023, 240, 110098. [Google Scholar] [CrossRef]
- Cui, Y.F.; Zheng; Jiang, Z.G.L.; Wang, W.D.; Zhou, M.; Wang, P.; Yu, Y.Y.; Wang, Q. Green preparation of PEDOT-based composites with outstanding electrothermal heating and durable rapid-response sensing performance for smart healthcare textiles. Chem. Eng. J. 2022, 446, 137189. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zhao, Y.; Shen, X.F.; Ni, Z.H. Biocatalytically synthesized of water-soluble alkoxysulfonate-functionalized poly(3,4-ethylenedioxythiophene). Mater. Chem. Phys. 2018, 208, 91–96. [Google Scholar] [CrossRef]
- Zhuang, A.; Pan, Q.C.; Qian, Y.; Fan, S.N.; Zhang, Y.; Song, L.J.; Zhu, B.; Zhang, Y.P. Transparent conductive silk film with a PEDOT-OH nano layer as an electroactive cell interface. ACS Biomater. Sci. Eng. 2021, 7, 1202–1215. [Google Scholar] [CrossRef]
- Meng, W.; Ge, R.; Li, Z.; Tong, J.; Liu, T.; Zhao, Q.; Xiong, S.; Jiang, F.; Mao, L.; Zhou, Y. Conductivity enhancement of PEDOT:PSS films via phosphoric acid treatment for flexible all-plastic solar cells. ACS Appl. Mater. Interfaces 2015, 7, 14089–14094. [Google Scholar] [CrossRef]
- Cui, Y.F.; Zheng, G.L.; Jiang, Z.; Zhou, M.; Wang, P.; Yu, Y.Y.; Wang, Q. Highly integrated smart mountaineering clothing with dual-mode synergistic heating and sensitive sensing for personal thermal management and human health monitoring. J. Mater. Sci. Technol. 2024, 182, 12–21. [Google Scholar] [CrossRef]
- Vasil’eva, I.S.; Shumakovich, G.P.; Khlupova, M.E.; Vasiliev, R.B.; Emets, V.V.; Bogdanovskaya, V.A.; Morozova, O.V.; Yaropolov, A.I. Enzymatic synthesis and electrochemical characterization of sodium 1,2-naphthoquinone-4-sulfonate-doped PEDOT/MWCNT composite. RSC Adv. 2020, 10, 33010–33017. [Google Scholar] [CrossRef]
- Nagarajan, S.; Kumar, J.; Bruno, F.F.; Samuelson, L.A.; Nagarajan, R. Biocatalytically synthesized poly(3,4-ethylenedioxythiophene). Macromolecules 2008, 41, 3049–3052. [Google Scholar] [CrossRef]
- Cui, Y.F.; Jiang, Z.; Zhou, Y.; Wang, Q.; Zhou, M.; Wang, P.; Yu, Y.Y. Poly(3,4-ethylenedioxythiophene)-coated conductive polyester non-woven fabric prepared by enzymatic polymerization. Fibers Polym. 2022, 23, 1595–1601. [Google Scholar] [CrossRef]
- He, X.Y.; Liu, M.Y.; Cai, J.X.; Li, Z.; Teng, Z.L.; Hao, Y.N.; Cui, Y.F.; Yu, J.Y.; Wang, L.M.; Qin, X.H. Waste Cotton-Derived Fiber-Based Thermoelectric Aerogel for Wearable and Self-Powered Temperature-Compression Strain Dual-Parameter Sensing. Engineering 2024, 39, 235–243. [Google Scholar] [CrossRef]
- He, X.; Li, C.; Zhu, S.; Cai, J.; Yang, G.; Hao, Y.; Shi, Y.; Wang, R.; Wang, L.; Li, X.; et al. Layer-by-layer self-assembly of durable, breathable and enhanced performance thermoelectric fabrics for collaborative monitoring of human signal. Chem. Eng. J. 2024, 490, 151470. [Google Scholar] [CrossRef]
- Wang, Q.H.; Pan, X.F.; Lin, C.M.; Lin, D.Z.; Ni, Y.H.; Chen, L.H.; Huang, L.L.; Cao, S.L.; Ma, X.J. Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT:sulfonated lignin as conductive materials. Chem. Eng. J. 2019, 370, 1039–1047. [Google Scholar] [CrossRef]
- Ouyang, J.Y.; Xu, Q.; Chu, C.W.; Yang, Y.; Li, G.; Shinar, J. On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 2004, 45, 8443–8450. [Google Scholar] [CrossRef]
- Neves, M.F.F.; Damasceno, J.P.V.; Junior, O.D.L.; Zarbin, A.J.G.; Roman, L.S. Conductive ink based on PEDOT nanoparticles dispersed in water without organic solvents, passivant agents or metallic residues. Synth. Met. 2021, 272, 116657. [Google Scholar] [CrossRef]
Samples | EDOT (mmol/L) | PSS (mmol/L) |
---|---|---|
PEDOT:PSS-21 | 50 | 25 |
PEDOT:PSS-11 | 50 | 50 |
PEDOT:PSS-12 | 50 | 100 |
PEDOT:PSS-13 | 50 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Cui, Y.; Miao, M. Convenient Preparation of PEDOT-Based Conductive Fabrics via a Green Strategy for Morse Code Recognition. Polymers 2025, 17, 1816. https://doi.org/10.3390/polym17131816
Yu H, Cui Y, Miao M. Convenient Preparation of PEDOT-Based Conductive Fabrics via a Green Strategy for Morse Code Recognition. Polymers. 2025; 17(13):1816. https://doi.org/10.3390/polym17131816
Chicago/Turabian StyleYu, Hongjian, Yifan Cui, and Miao Miao. 2025. "Convenient Preparation of PEDOT-Based Conductive Fabrics via a Green Strategy for Morse Code Recognition" Polymers 17, no. 13: 1816. https://doi.org/10.3390/polym17131816
APA StyleYu, H., Cui, Y., & Miao, M. (2025). Convenient Preparation of PEDOT-Based Conductive Fabrics via a Green Strategy for Morse Code Recognition. Polymers, 17(13), 1816. https://doi.org/10.3390/polym17131816