Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, P.; Sui, Y.; Zhan, H.; Wang, C.; Xin, H.L.; Cheng, H.; Kang, F.; Yang, C. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 2021, 121, 5986–6056. [Google Scholar] [CrossRef] [PubMed]
- Acebedo, B.; Morant-Minana, M.C.; Gonzalo, E.; Larramendi, I.R.; Villaverde, A.; Rikarte, J.; Fallarino, L. Current status and future perspective on lithium metal anode production methods. Adv. Energy Mater. 2023, 13, 2203477. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, R.; Xu, R.; Li, Y.; Tian, W.; Gao, M.; Wang, M.; Li, D.; Liang, X.; Xie, L.; et al. Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc ion battery. Adv. Funct. Mater. 2022, 32, 2111406. [Google Scholar] [CrossRef]
- Lu, G.; Nai, J.; Luan, D.; Tao, X.; Lou, X.W. Surface engineering toward stable lithium metal anodes. Sci. Adv. 2023, 9, adf1550. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Wang, T.; Liu, Y.; Du, H.; Li, S.; Du, Z.; Ai, W. Impact of morphological dimensions in carbon-based interlayers on lithium metal anode stabilization. Adv. Energy Mater. 2023, 13, 2302565. [Google Scholar] [CrossRef]
- Molaiyan, P.; Abdollahifar, M.; Boz, B.; Beutl, A.; Krammer, M.; Zhang, N.; Tron, A.; Romio, M.; Ricci, M.; Adelung, R.; et al. Optimizing current collector interfaces for efficient “anode-free” lithium metal batteries. Adv. Funct. Mater. 2023, 34, 2311301. [Google Scholar] [CrossRef]
- Han, Y.; Liu, B.; Xiao, Z.; Zhang, W.; Wang, X.; Pan, G.; Xia, Y.; Xia, X.; Tu, J. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat 2021, 3, 155–174. [Google Scholar] [CrossRef]
- Sanchez, A.J.; Dasgupta, N.P. Lithium metal anodes: Advancing our mechanistic understanding of cycling phenomena in liquid and solid electrolytes. J. Am. Chem. Soc. 2024, 146, 4282–4300. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Luo, F.; Wang, D.; Bu, L.; Tao, L.; Zheng, Z. Carbon/lithium composite anode for advanced lithium metal batteries: Design, progress, in situ characterization, and perspectives. Adv. Energy Mater. 2022, 12, 2201493. [Google Scholar] [CrossRef]
- Li, P.; Fang, Z.; Dong, X.; Wang, C.; Xia, Y. The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. Natl. Sci. Rev. 2022, 9, nwac031. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, K.; Zhu, Z.; Tong, Z.; Liang, X. 3D-hosted lithium metal anodes. Chem. Soc. Rev. 2024, 53, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, Y.; Qiao, L.; Li, D.; Deng, J.; Zhou, J.; Xie, L.; Hou, Y.; Wang, T.; Tian, W.; et al. Atomic layer deposition assisted superassembly of ultrathin ZnO layer decorated hierarchical Cu foam for stable lithium metal anode. Energy Storage Mater. 2021, 37, 123–134. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Wang, M.; Li, D.; Zhou, J.; Xie, L.; Wang, T.; Tian, W.; Zhai, Y.; Gong, H.; et al. Super-assembled hierarchical CoO nanosheets-Cu foam composites as multi-level hosts for high-performance lithium metal anodes. Small 2021, 17, 2101301. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cheng, F.; Zhang, N.; Tian, W.; Zhou, J.; Zhang, R.; Cao, J.; Luo, M.; Li, N.; Jiang, L.; et al. Superassembled red phosphorus nanorod–reduced graphene oxide microflowers as high-performance lithium-ion battery anodes. Adv. Eng. Mater. 2021, 23, 2001507. [Google Scholar] [CrossRef]
- Wen, Z.; Fang, W.; Wu, X.; Qin, Z.; Kang, H.; Chen, L.; Zhang, N.; Liu, X.; Chen, G. High-concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate-based electrolyte. Adv. Funct. Mater. 2022, 32, 2204768. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.-K.; Zhang, X.-Q.; Lu, J.; Pei, C.; Min, D.; Huang, J.Q.; Park, H.S. Electrolyte additive for interfacial engineering of lithium and zinc metal anodes. Adv. Energy Mater. 2024. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, B.; Jiang, Z.; Li, F. Solvation chemistry of electrolytes for stable anodes of lithium metal batteries. Nano Res. 2023, 16, 8072–8081. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Deng, L.; Yang, Y.; Tan, L.; Niu, X.; Chen, Y.; Zeng, L.; Fan, X.; Zhu, Y. An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Mater. 2023, 54, 450–460. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, B.; Fang, Y.; Dang, D.; Shen, X.; Li, Z.; Wu, M.; Hong, Y.; Liu, Q. Inhibition of lithium dendrites and dead lithium by an ionic liquid additive toward safe and stable lithium metal anodes. Chinese Chem. Lett. 2022, 33, 3951–3954. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, S.; Li, J.; Xie, B.; Ma, J.; Dong, S.; Cui, G. Robust transport: An artificial solid electrolyte interphase design for anode-free lithium-metal batteries. Adv. Mater. 2023, 35, 2209404. [Google Scholar] [CrossRef]
- Shin, W.; Manthiram, A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. Int. Edit. 2022, 61, e202115909. [Google Scholar] [CrossRef]
- Fan, H.; Mao, P.; Sun, H.; Wang, Y.; Mofarah, S.S.; Koshy, P.; Arandiyan, H.; Wang, Z.; Liu, Y.; Shao, Z. Recent advances of metal telluride anodes for high-performance lithium/sodium–ion batteries. Mater. Horiz. 2022, 9, 524–546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jin, T.; Cheng, G.; Yuan, S.; Sun, Z.; Li, N.-W.; Yu, L.; Ding, S. Functional polymers in electrolyte optimization and interphase design for lithium metal anodes. J. Mater. Chem. A 2021, 9, 13388–13401. [Google Scholar] [CrossRef]
- Guan, J.; Li, N.; Yu, L. Artificial interphase layers for lithium metal anode. Acra. Phys. Chim. Sin. 2021, 37, 2009011. [Google Scholar] [CrossRef]
- Sayavong, P.; Zhang, W.; Oyakhire, S.T.; Boyle, D.T.; Chen, Y.; Kim, S.C.; Vilá, R.A.; Holmes, S.E.; Kim, M.S.; Bent, S.F.; et al. Dissolution of the Solid Electrolyte Interphase and Its Effects on Lithium Metal Anode Cyclability. J. Am. Chem. Soc. 2023, 145, 12342–12350. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Choi, K.; Song, H.Y.S.; Kim, D.; Youn, D.Y.; Cho, S.H.; Jeon, D.; Lee, J.Y.; Lee, J.Y.; Jang, W.; et al. Reinforcing Native Solid-Electrolyte Interphase Layers via Electrolyte-Swellable Soft-Scaffold for Lithium Metal Anode. Adv. Energy Mater. 2023, 13, 202203818. [Google Scholar] [CrossRef]
- Li, Z.; Ding, X.; Feng, W.; Han, B.-H. Aligned artificial solid electrolyte interphase layers as versatile interfacial stabilizers on lithium metal anodes. J. Mater. Chem. A 2022, 10, 10474–10483. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Z.; He, S.-A.; Wang, H.; Gao, M.; Wang, W.; Yang, J.; Xu, X.; Hu, J.; Lu, A.; et al. Inorganic-rich and flexible solid-electrolyte interphase formed over dipole-dipole interaction for highly stable lithium-metal anodes. Adv. Funct. Mater. 2022, 32, 2205304. [Google Scholar] [CrossRef]
- Zhang, C.H.; Jin, T.; Liu, J.; Ma, J.; Li, N.W.; Yu, L. In situ formed gradient composite solid electrolyte interphase layer for stable lithium metal anodes. Small 2023, 19, 2301523. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Zhang, R.; Li, Y.; Xu, R.; Li, Y.; Li, D.; Gao, M.; Xu, G.; Wang, M.; Liang, X.; et al. Super-assembled hierarchical and stable N-doped carbon nanotube nanoarrays for dendrite-free lithium metal batteries. ACS Appl. Energy Mater. 2022, 5, 815–824. [Google Scholar] [CrossRef]
- Wang, X.; Mai, W.; Guan, X.; Liu, Q.; Tu, W.; Li, W.; Kang, F.; Li, B. Recent advances of electroplating additives enabling lithium metal anodes to applicable battery techniques. Energy Environ. Mater. 2021, 4, 284–292. [Google Scholar] [CrossRef]
- Song, L.; Ning, D.; Chai, Y.; Ma, M.; Zhang, G.; Wang, A.; Su, H.; Hao, D.; Zhu, M.; Zhang, J.; et al. Correlating solid electrolyte interphase composition with dendrite-free and long life-span lithium metal batteries via advanced characterizations and simulations. Small Methods 2023, 7, 2300168. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pei, A.; Lin, D.; Xie, J.; Yang, A.; Xu, J.; Lin, K.; Wang, J.; Wang, H.; Shi, F.; et al. Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. Adv. Energy Mater. 2019, 9, 1900858. [Google Scholar] [CrossRef]
- Pan, K.; Zhang, L.; Qian, W.; Wu, X.; Dong, K.; Zhang, H.; Zhang, S. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, 2000399. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 6820–6877. [Google Scholar] [CrossRef] [PubMed]
- Mei, W.; Jiang, L.; Liang, C.; Sun, J.; Wang, Q. Understanding of Li-plating on graphite electrode: Detection, quantification and mechanism revelation. Energy Storage Mater. 2021, 41, 209–221. [Google Scholar] [CrossRef]
- Zhou, T.; Tang, W.; Lv, J.; Deng, Y.; Liu, Q.; Zhang, L.; Liu, R. Yolk-Shell Structured ST@Al2O3 Enables Functional PE Separator with Enhanced Lewis Acid Sites for High-Performance Lithium Metal Batteries. Small 2023, 19, 202303924. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.M.; Son, H.; Park, K.U.; Choi, J.; Suk, J.; Kang, E.S.; Kim, D.W.; Kim, D. Al2O3 Ceramic/Nanocellulose-Coated Non-Woven Separator for Lithium-Metal Batteries. Coatings 2023, 13, 916. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Gu, X.; Chen, Q.; Zhai, Q.; Zuo, J.; He, Q.; Jiang, H.; Yang, Y.; Duan, H.; et al. A functional SnS2-engineered separator for durable and practical lithium metal battery. Energy Storage Mater. 2023, 61, 102900. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, W.; Sun, Z.; Ding, R.; Wang, X. Graphene-Based Materials for the Separator Functionalization of Lithium-Ion/Metal/Sulfur Batteries. Materials 2023, 16, 4449. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Sheng, L.; Gao, X.; Xie, X.; Bai, Y.; Liu, G.; Dong, H.; Wang, T.; Huang, X.; He, J. rGO/Li-Al-LDH composite nanosheets modified commercial polypropylene (PP) separator to suppress lithium dendrites for lithium metal battery. Electrochim. Acta 2022, 430, 141073. [Google Scholar] [CrossRef]
- Sharma, B.; Alolaywi, H.; Tan, B.; Shepard, D.; Li, Y.; Liao, Y.; Cheng, Y. Zeolite Coated Separators for Improved Performance and Safety of Lithium Metal Batteries. J. Electrochem. Soc. 2023, 170, 090506. [Google Scholar] [CrossRef]
- Yu, W.; Shen, L.; Lu, X.; Han, J.; Geng, N.; Lai, C.; Xu, Q.; Peng, Y.; Min, Y.; Lu, Y. Novel composite separators based on heterometallic metal-organic frameworks improve the performance of lithium-ion batteries. Adv. Energy Mater. 2023, 13, 202204055. [Google Scholar] [CrossRef]
- Lin, G.; Jia, K.; Bai, Z.; Liu, C.; Liu, S.; Huang, Y.; Liu, X. Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv. Funct. Mater. 2022, 32, 2207969. [Google Scholar] [CrossRef]
- Gao, K.; Luo, J.; Li, X.; Fan, K.; Luo, L.; Liu, X. Electrospun heterocycle aramid nanofiber separator with MOF-supported porous structure enabled excellent cycling stability for lithium metal batteries with high LiFePO4 loading. J. Alloys Compd. 2023, 966, 171549. [Google Scholar] [CrossRef]
- Min, Y.; Liu, X.; Guo, L.; Wu, A.; Xian, D.; Zhang, B.; Wang, L. Construction of diversified ion channels in lithium-ion battery separator using polybenzimidazole and ion-modified metal-organic framework. ACS Appl. Energy Mater. 2022, 5, 9131–9140. [Google Scholar] [CrossRef]
- Dang, B.; Li, Q.; Luo, Y.; Zhao, R.; Li, J.; Wu, F. Metal-organic framework-based glass fiber separator as an efficacious polysulfide barrier and dendrite suppressor for lithium-sulfur batteries. J. Alloys Compd. 2022, 915, 165375. [Google Scholar] [CrossRef]
- Yao, S.; Yang, Y.; Liang, Z.; Chen, J.; Ding, J.; Li, F.; Liu, J.; Xi, L.; Zhu, M.; Liu, J. A dual-functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 2023, 33, 202212466. [Google Scholar] [CrossRef]
- Ma, J.; Wu, Y.; Jiang, H.; Yao, X.; Zhang, F.; Hou, X.; Feng, X.; Xiang, H. In situ directional polymerization of poly(1,3-dioxolane) solid electrolyte induced by cellulose paper-based composite separator for lithium metal batteries. Energy Environ. Mater. 2023, 6, 12370. [Google Scholar] [CrossRef]
- Du, W.; Jiang, X.; Li, S.; Cao, P.; Li, L.; Feng, D.; Huang, X.; Xu, F.; Ye, C.; Liang, X.; et al. Maltodextrin as a commercial-grade electrolyte additive against dendrite formation and side reactions for aqueous zinc-ion batteries. Small Methods 2024, 2400249. [Google Scholar] [CrossRef]
- Li, L.; Guo, Z.; Li, S.; Cao, P.; Du, W.; Feng, D.; Wei, W.; Xu, F.; Ye, C.; Yang, M.; et al. Erythritol as a saccharide multifunctional electrolyte additive for highly reversible zinc anode. Nanomaterials 2024, 14, 644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, D.; Zheng, R.; Qiao, L.; Li, S.; Xu, F.; Ye, C.; Zhang, J.; Li, Y. Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes. Polymers 2024, 16, 1924. https://doi.org/10.3390/polym16131924
Feng D, Zheng R, Qiao L, Li S, Xu F, Ye C, Zhang J, Li Y. Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes. Polymers. 2024; 16(13):1924. https://doi.org/10.3390/polym16131924
Chicago/Turabian StyleFeng, Deshi, Ruiling Zheng, Li Qiao, Shiteng Li, Fengzhao Xu, Chuangen Ye, Jing Zhang, and Yong Li. 2024. "Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes" Polymers 16, no. 13: 1924. https://doi.org/10.3390/polym16131924
APA StyleFeng, D., Zheng, R., Qiao, L., Li, S., Xu, F., Ye, C., Zhang, J., & Li, Y. (2024). Metal–Organic Framework-Derived Co9S8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes. Polymers, 16(13), 1924. https://doi.org/10.3390/polym16131924