Dual Semi-Interpenetrating Networks of Water-Soluble Macromolecules and Supramolecular Polymer-like Chains: The Role of Component Interactions
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dreiss, C.A.; Feng, Y. Wormlike Micelles: Advances in Systems, Characterisation and Applications; The Royal Society of Chemistry: London, UK, 2017; ISBN 9781782629788. [Google Scholar]
- Dreiss, C.A. Wormlike Micelles: Where Do We Stand? Recent Developments, Linear Rheology and Scattering Techniques. Soft Matter 2007, 3, 956–970. [Google Scholar] [CrossRef]
- Feng, Y.; Chu, Z.; Dreiss, C.A. Smart Wormlike Micelles: Design, Characteristics and Applications; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783662459492. [Google Scholar]
- Linet Rose, J.; Tata, B.V.R.; Talmon, Y.; Aswal, V.K.; Hassan, P.A.; Sreejith, L. Micellar Solution with PH Responsive Viscoelasticity and Colour Switching Property. RSC Adv. 2015, 5, 11397–11404. [Google Scholar] [CrossRef]
- Zana, R.; Kaler, E.W. Giant Micelles: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-8493-7308-4. [Google Scholar]
- Molchanov, V.S.; Philippova, O.E. Dominant Role of Wormlike Micelles in Temperature-Responsive Viscoelastic Properties of Their Mixtures with Polymeric Chains. J. Colloid Interface Sci. 2013, 394, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, A.L.; Molchanov, V.S.; Philippova, O.E. Polymer-like Wormlike Micelles of Ionic Surfactants: Structure and Rheological Properties. Polym. Sci.-Ser. A 2019, 61, 215–225. [Google Scholar] [CrossRef]
- Siriwatwechakul, W.; LaFleur, T.; Prud’homme, R.K.; Sullivan, P. Effects of Organic Solvents on the Scission Energy of Rodlike Micelles. Langmuir 2004, 20, 8970–8974. [Google Scholar] [CrossRef]
- Shibaev, A.V.; Ospennikov, A.S.; Kuznetsova, E.K.; Kuklin, A.I.; Aliev, T.M.; Novikov, V.V.; Philippova, O.E. Universal Character of Breaking of Wormlike Surfactant Micelles by Additives of Different Hydrophobicity. Nanomaterials 2022, 12, 4445. [Google Scholar] [CrossRef]
- Chu, Z.; Dreiss, C.A.; Feng, Y. Smart Wormlike Micelles. Chem. Soc. Rev. 2013, 42, 7174–7203. [Google Scholar] [CrossRef]
- Falbe, J. Surfactants in Consumer Products: Theory, Technology and Application; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Oikonomou, E.K.; Christov, N.; Cristobal, G.; Bourgaux, C.; Heux, L.; Boucenna, I.; Berret, J.F. Design of Eco-Friendly Fabric Softeners: Structure, Rheology and Interaction with Cellulose Nanocrystals. J. Colloid Interface Sci. 2018, 525, 206–215. [Google Scholar] [CrossRef]
- Kim, J.H.; Domach, M.M.; Tilton, R.D. Pyrene Micropartitioning and Solubilization by Sodium Dodecyl Sulfate Complexes with Poly(Ethylene Glycol). J. Phys. Chem. B 1999, 103, 10582–10590. [Google Scholar] [CrossRef]
- Simon, M.; Krause, P.; Chiappisi, L.; Noirez, L.; Gradzielski, M. Structural Control of Polyelectrolyte/Microemulsion Droplet Complexes (PEMECs) with Different Polyacrylates. Chem. Sci. 2019, 10, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Le Garrec, D.; Ranger, M.; Leroux, J.C. Micelles in Anticancer Drug Delivery. Am. J. Drug Deliv. 2004, 2, 15–42. [Google Scholar] [CrossRef]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S. A Comprehensive Review of Beneficial Applications of Viscoelastic Surfactants in Wellbore Hydraulic Fracturing Fluids. Fuel 2023, 338, 127228. [Google Scholar] [CrossRef]
- Barati, R.; Liang, J.T. A Review of Fracturing Fluid Systems Used for Hydraulic Fracturing of Oil and Gas Wells. J. Appl. Polym. Sci. 2014, 131, 40735. [Google Scholar] [CrossRef]
- Shibaev, A.V.; Osiptsov, A.A.; Philippova, O.E. Novel Trends in the Development of Surfactant-Based Hydraulic Fracturing Fluids: A Review. Gels 2021, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, R. Association of Nonionic Polymers with Micelles, Bilayers, and Microemulsions. J. Chem. Phys. 1989, 90, 1980–1994. [Google Scholar] [CrossRef]
- Brackman, J.C.; Engberts, J.B.F.N. Influence of Polymers on the Micellization of Cetyltrimethylammonium Salts. Langmuir 1991, 7, 2097–2102. [Google Scholar] [CrossRef]
- Brackman, J.C.; Engberts, J.B.F.N. Polymer-Induced Breakdown of Rodlike Micelles. A Striking Transition of a Non-Newtonian to a Newtonian Fluid. J. Am. Chem. Soc. 1990, 112, 872–873. [Google Scholar] [CrossRef]
- Lin, Z.; Eads, C.D. Polymer-Induced Structural Transitions in Oleate Solutions: Microscopy, Rheology, and Nuclear Magnetic Resonance Studies. Langmuir 1997, 13, 2647–2654. [Google Scholar] [CrossRef]
- Li, X.; Len, Z.; Cai, J.; Seriven, L.E.; Davis, H.T. Polymer-Induced Microstructural Transitions in Surfactant Solutions. J. Phys. Chem. 1995, 99, 10865–10878. [Google Scholar] [CrossRef]
- Shibaev, A.V.; Makarov, A.V.; Kuklin, A.I.; Iliopoulos, I.; Philippova, O.E. Role of Charge of Micellar Worms in Modulating Structure and Rheological Properties of Their Mixtures with Nonionic Polymer. Macromolecules 2018, 51, 213–221. [Google Scholar] [CrossRef]
- Flood, C.; Dreiss, C.A.; Croce, V.; Cosgrove, T.; Karlsson, G.G. Wormlike Micelles Mediated by Polyelectrolyte. Langmuir 2005, 21, 7646–7652. [Google Scholar] [CrossRef] [PubMed]
- Shibaev, A.V.; Mityuk, D.Y.; Muravlev, D.A.; Philippova, O.E. Viscoelastic Solutions of Wormlike Micelles of a Cationic Surfactant and a Stiff-Chain Anionic Polyelectrolyte. Polym. Sci.-Ser. A 2019, 61, 765–772. [Google Scholar] [CrossRef]
- Shibaev, A.V.; Kuklin, A.I.; Torocheshnikov, V.N.; Orekhov, A.S.; Roland, S.; Miquelard-Garnier, G.; Matsarskaia, O.; Iliopoulos, I.; Philippova, O.E. Double Dynamic Hydrogels Formed by Wormlike Surfactant Micelles and Cross-Linked Polymer. J. Colloid Interface Sci. 2022, 611, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Roland, S.; Miquelard-Garnier, G.; Shibaev, A.V.; Aleshina, A.L.; Chennevière, A.; Matsarskaia, O.; Sollogoub, C.; Philippova, O.E.; Iliopoulos, I. Dual Transient Networks of Polymer and Micellar Chains: Structure and Viscoelastic Synergy. Polymers 2021, 13, 4255. [Google Scholar] [CrossRef] [PubMed]
- Ben Halima, N. Poly(Vinyl Alcohol): Review of Its Promising Applications and Insights into Biodegradation. RSC Adv. 2016, 6, 39823–39832. [Google Scholar] [CrossRef]
- Vega, I.; Fernández, E.; Mijangos, C.; D’Accorso, N.; Lopez, D. Potential Applications of Poly(Vinyl Alcohol)-Congo Red Aqueous Solutions and Hydrogels as Liquids for Hydraulic Fracturing. J. Appl. Polym. Sci. 2008, 110, 695–700. [Google Scholar] [CrossRef]
- Shibaev, A.V.; Aleshina, A.L.; Arkharova, N.A.; Orekhov, A.S.; Kuklin, A.I.; Philippova, O.E. Disruption of Cationic/Anionic Viscoelastic Surfactant Micellar Networks by Hydrocarbon as a Basis of Enhanced Fracturing Fluids Clean-Up. Nanomaterials 2020, 10, 2353. [Google Scholar] [CrossRef] [PubMed]
- Kuklin, A.I.; Islamov, A.K.; Gordeliy, V.I. Scientific Reviews: Two-Detector System for Small-Angle Neutron Scattering Instrument. Neutron News 2005, 16, 16–18. [Google Scholar] [CrossRef]
- Kuklin, A.I.; Soloviov, D.V.; Rogachev, A.V.; Utrobin, P.K.; Kovalev, Y.S.; Balasoiu, M.; Ivankov, O.I.; Sirotin, A.P.; Murugova, T.N.; Petukhova, T.B.; et al. New Opportunities Provided by Modernized Small-Angle Neutron Scattering Two-Detector System Instrument (YuMO). J. Phys. Conf. Ser. 2011, 291, 012013. [Google Scholar] [CrossRef]
- Soloviev, A.G.; Solovjeva, T.M.; Ivankov, O.I.; Soloviov, D.V.; Rogachev, A.V.; Kuklin, A.I. SAS Program for Two-Detector System: Seamless Curve from Both Detectors. Proc. J. Phys. Conf. Ser. 2017, 848, 012020. [Google Scholar] [CrossRef]
- SasView. Available online: http://www.sasview.org/ (accessed on 18 September 2023).
- Iancu, C.V.; Tivol, W.F.; Schooler, J.B.; Dias, D.P.; Henderson, G.P.; Murphy, G.E.; Wright, E.R.; Li, Z.; Yu, Z.; Briegel, A.; et al. Electron Cryotomography Sample Preparation Using the Vitrobot. Nat. Protoc. 2007, 1, 2813–2819. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.R.; Kaler, E.W. Highly Viscoelastic Wormlike Micellar Solutions Formed by Cationic Surfactants with Long Unsaturated Tails. Langmuir 2001, 17, 300–306. [Google Scholar] [CrossRef]
- de Souza, R.N.; Jora, M.Z.; Duarte, L.G.T.A.; Clinckspoor, K.J.; Atvars, T.D.Z.; Sabadini, E. A New Interpretation of the Mechanism of Wormlike Micelle Formation Involving a Cationic Surfactant and Salicylate. J. Colloid Interface Sci. 2019, 552, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Shishkhanova, K.B.; Molchanov, V.S.; Baranov, A.N.; Kharitonova, E.P.; Orekhov, A.S.; Arkharova, N.A.; Philippova, O.E. A PH-Triggered Reinforcement of Transient Network of Wormlike Micelles by Halloysite Nanotubes of Different Charge. J. Mol. Liq. 2023, 370, 121032. [Google Scholar] [CrossRef]
- Khouri, S.J.; Alsaad, D.; Altwaiq, A.M. Salicylic Acid Solubility and Thermodynamic Dissociation Constant at Various Temperatures in Water: Variable Ionic Strength Titrimetric Analysis. J. Solution Chem. 2024. [Google Scholar] [CrossRef]
- Cardiel, J.J.; Tonggu, L.; Dohnalkova, A.C.; De La Iglesia, P.; Pozzo, D.C.; Wang, L.; Shen, A.Q. Worming Their Way into Shape: Toroidal Formations in Micellar Solutions. ACS Nano 2013, 7, 9704–9713. [Google Scholar] [CrossRef] [PubMed]
- Shibaev, A.V.; Abrashitova, K.A.; Kuklin, A.I.; Orekhov, A.S.; Vasiliev, A.L.; Iliopoulos, I.; Philippova, O.E. Viscoelastic Synergy and Microstructure Formation in Aqueous Mixtures of Nonionic Hydrophilic Polymer and Charged Wormlike Surfactant Micelles. Macromolecules 2017, 50, 339–348. [Google Scholar] [CrossRef]
- Negm, N.A.; Mohamed, A.S.; Ahmed, S.M.; El-Raouf, M.A. Polymer-Cationic Surfactant Interaction: 1. Surface and Physicochemical Properties of Polyvinyl Alcohol (PVA)-S-Alkyl Isothiouronium Bromide Surfactant Mixed Systems. J. Surfactants Deterg. 2015, 18, 245–250. [Google Scholar] [CrossRef]
- Croce, V.; Cosgrove, T.; Maitland, G.; Hughes, T. Rheology, Cryogenic Transmission Electron Spectroscopy, and Small-Angle Neutron Scattering of Highly Viscoelastic Wormlike Micellar Solutions. Langmuir 2003, 19, 8536–8541. [Google Scholar] [CrossRef]
- Sommer, C.; Pedersen, J.S.; Egelhaaf, S.U.; Cannavacciuolo, L.; Kohlbrecher, J.; Schurtenberger, P. Wormlike Micelles as “Equilibrium Polyelectrolytes”: Light and Neutron Scattering Experiments. Langmuir 2002, 18, 2495–2505. [Google Scholar] [CrossRef]
- Cannavacciuolo, L.; Sommer, C.; Pedersen, J.S.; Schurtenberger, P. Size, FLexibility, and Scattering Functions of Semiflexible Polyelectrolytes with Excluded Volume Effects: Monte Carlo simulations and Neutron Scattering Experiments. Phys. Rev. E-Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2000, 62, 5409–5419. [Google Scholar] [CrossRef]
- Budhlall, B.M.; Landfester, K.; Sudol, E.D.; Dimonie, V.L.; Klein, A.; El-Aasser, M.S. Characterization of Partially Hydrolyzed Poly(Vinyl Alcohol). Effect of Poly(Vinyl Alcohol) Molecular Architecture on Aqueous Phase Conformation. Macromolecules 2003, 36, 9477–9484. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Malkin, A.Y.; Kulichikhin, V.G.; Denisova, Y.I.; Krentsel, L.B.; Shandryuk, G.A.; Litmanovich, A.D.; Litmanovich, E.A.; Bondarenko, G.N.; Kudryavtsev, Y.V. Effect of Chain Structure on the Rheological Properties of Vinyl Acetate-Vinyl Alcohol Copolymers in Solution and Bulk. Macromolecules 2014, 47, 4790–4804. [Google Scholar] [CrossRef]
- Merekalova, N.D.; Bondarenko, G.N.; Denisova, Y.I.; Krentsel, L.B.; Litmanovich, A.D.; Kudryavtsev, Y.V. Effect of Chain Structure on Hydrogen Bonding in Vinyl Acetate–Vinyl Alcohol Copolymers. J. Mol. Struct. 2017, 1134, 475–481. [Google Scholar] [CrossRef]
- Squillace, O.; Fong, R.; Shepherd, O.; Hind, J.; Tellam, J.; Steinke, N.-J.; Thompson, R.L. Influence of PVAc/PVA Hydrolysis on Additive Surface Activity. Polymers 2020, 12, 205. [Google Scholar] [CrossRef] [PubMed]
- Shashkina, J.A.; Philippova, O.E.; Zaroslov, Y.D.; Khokhlov, A.R.; Pryakhina, T.A.; Blagodatskikh, I.V. Rheology of Viscoelastic Solutions of Cationic Surfactant. Effect of Added Associating Polymer. Langmuir 2005, 21, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Couillet, I.; Hughes, T.; Maitland, G. Synergistic Effects in Aqueous Solutions of Mixed Wormlike Micelles and Hydrophobically Modified Polymers. Macromolecules 2005, 38, 5271–5282. [Google Scholar] [CrossRef]
pD | EHAC Concentration, mM | PVA Concentration, monomol/L | Radius of Cylinder R, Å | Radius Polydispersity ΔR/R |
---|---|---|---|---|
6 | 26 | 24 | 0.15 | |
6 | 26 | 890 | 21 | 0.25 |
11.5 | 26 | 24 | 0.15 | |
11.5 | 26 | 890 | 23 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarova, A.L.; Kwiatkowski, A.L.; Kuklin, A.I.; Chesnokov, Y.M.; Philippova, O.E.; Shibaev, A.V. Dual Semi-Interpenetrating Networks of Water-Soluble Macromolecules and Supramolecular Polymer-like Chains: The Role of Component Interactions. Polymers 2024, 16, 1430. https://doi.org/10.3390/polym16101430
Makarova AL, Kwiatkowski AL, Kuklin AI, Chesnokov YM, Philippova OE, Shibaev AV. Dual Semi-Interpenetrating Networks of Water-Soluble Macromolecules and Supramolecular Polymer-like Chains: The Role of Component Interactions. Polymers. 2024; 16(10):1430. https://doi.org/10.3390/polym16101430
Chicago/Turabian StyleMakarova, Anna L., Alexander L. Kwiatkowski, Alexander I. Kuklin, Yuri M. Chesnokov, Olga E. Philippova, and Andrey V. Shibaev. 2024. "Dual Semi-Interpenetrating Networks of Water-Soluble Macromolecules and Supramolecular Polymer-like Chains: The Role of Component Interactions" Polymers 16, no. 10: 1430. https://doi.org/10.3390/polym16101430
APA StyleMakarova, A. L., Kwiatkowski, A. L., Kuklin, A. I., Chesnokov, Y. M., Philippova, O. E., & Shibaev, A. V. (2024). Dual Semi-Interpenetrating Networks of Water-Soluble Macromolecules and Supramolecular Polymer-like Chains: The Role of Component Interactions. Polymers, 16(10), 1430. https://doi.org/10.3390/polym16101430