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Abstract: In this study, the quantum chemical method was used to investigate the microscopic
characteristics of α-poly viny difluoride (PVDF) molecules under the influence of an electric field, and
the impact of mechanical stress and electric field polarization on the insulation performance of PVDF
was analyzed through the material’s structural and space charge characteristics. The findings reveal
that long-term polarization of an electric field leads to a gradual decline in stability and a reduction
in the energy gap of the front orbital, resulting in the improved conductivity of PVDF molecules and
a change in the reactive active site of the molecular chain. When the energy gap reaches a certain
value, a chemical bond fracture occurs, with the C-H and C-F bonds at the ends of the backbone
breaking first to form free radicals. This process is triggered by an electric field of 8.7414 × 109 V/m,
which leads to the emergence of a virtual frequency in the infrared spectrogram and the eventual
breakdown of the insulation material. These results are of great significance in understanding the
aging mechanism of electric branches in PVDF cable insulation and optimizing the modification of
PVDF insulation materials.
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1. Introduction

PVDF possesses unique piezoelectric, ferroelectric, and thermoelectric properties, as
well as a low price, high flexibility, good biocompatibility, excellent aging resistance, and
chemical stability [1,2]. Ferroelectric polymers such as PVDF are insulating, polar, and have
a non-conjugated backbone from an electronic perspective [3], which makes them highly
suitable for use as insulating materials [4,5]. The environment in which cables operate faces
challenges such as climate extremes and corrosion [6,7], and insulation requires support
from a wider range of properties, such as flame resistance and thermal stability. The PVDF
material has multiple excellent properties, such as elasticity, a low weight, high chemical
resistance, and heat resistance [8], so it is often used to produce cable insulation skins and
printed circuit board insulation.

However, during the operation of DC cables in power transmission engineering,
various factors, such as line faults and equipment switching, can cause the generation
and invasion of an operation impulse voltage [9]. Moreover, the electromagnetic energy
conversion process among the components causes the line system to oscillate, producing a
high-frequency (hundreds to thousands of Hz) high-amplitude impulse voltage. Under
the action of such repeated impact over-voltage, equipment insulation is damaged by
long-term aging, and the cumulative effect of the impact voltage on equipment insulation
damage requires urgent attention. The space charge effect is generally considered to be the
main reason for the deterioration of insulation materials, especially DC insulation [10,11].
Discharge has a significant acceleration effect on the deterioration of polymer insulation.
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Therefore, under the action of electrical stress, PVDF often appears to age as an electrical
insulation material, resulting in cracking and leading to premature insulation damage [12],
which poses a serious threat to the safe and stable operation of electrical equipment and
even the entire power system. The high temperature generated by the discharge causes the
pyrolysis reaction of molecules, which leads to degradation [13]. The energetic particles
generated by the discharge hit the macro-molecular chains, resulting in breakage. The
corrosive substances produced by the discharge erode the polymer and eventually damage
it. However, these theories are mainly based on experiments on the electric aging of
insulating materials and the experimental measurement of related parameters, which
cannot intuitively reveal the dynamic process and microscopic mechanisms of aging and
cracking phenomena in polymers under the action of an electric field [14].

The cracking reaction of insulating polymers under the action of an electric field
is a relatively complex physicochemical process. Traditional macroscopic experimental
techniques have some limitations, so the microscopic dynamics of PVDF breakdown under
an electric field cannot be observed intuitively. With the rapid development of computer
technology and software engineering, many previous experiments can be further studied at
the microscopic level. The theory of quantum mechanics means that molecular simulation
technology is not only limited to the study of chemistry, but also extended to electrical,
physical, biological and material science and other disciplines, promoting the development
of interdisciplinary research and providing a new means for people to understand the
material world, in addition to experimental methods and theoretical methods [15]. Many
scholars have applied molecular simulation methods to the field of high-voltage insulation,
such as the synergistic effect of electric fields and temperature on insulating oil [16,17],
the microscopic mechanism of the overheating of insulating oil [18,19], the aging and
degradation of insulating materials [20,21], and the diffusion of gas molecules in oil paper
insulation systems [22,23]. Meanwhile, molecular simulation has been successfully used in
the study of PVDF, the static and dynamical mechanical properties of PVDF [24], elastic
properties of PVDF crystals [25], and the effect of the addition of ionic liquids to PVDF [26].
It is obviously feasible to apply the molecular simulation method to the study of the space
charge formation and electric branch aging of PVDF cable materials.

In this study, the molecular dynamics simulation method is used to construct a PVDF
molecular model, and the semi-empirical method is used to optimize the structure of the
model. Different levels of external electric fields are applied in the direction of the main
chain of PVDF to study the changes in the total ground state stable energy, the dipole
moment, the molecular polarizability, and the space charge of PVDF molecules.

2. Density Functional Theory and Basic Model Calculations
2.1. Density Functional Theory

Density functional theory is a widely used computational method for studying the
electronic structures of multi-electron systems. It has found extensive application in the
fields of physics and chemistry, particularly in the study of molecular and condensed
matter properties. Density functional theory is widely used in condensed matter physics,
computational materials science, and computational chemistry [27,28]. In this paper, the
density functional theory method is used to calculate the electronic structures of molecules,
in which the effect of the external electric field on the electronic structure can be added to
the equation by the potential energy term. After applying the electric field, the Hamiltonian
H of the PVDF molecular system is as shown in Equation (1).

H = H0 + Hint (1)

Here, H0 is the corresponding Hamiltonian when no electric field is applied, and
Hint is the corresponding Hamiltonian when the external electric field interacts with the
molecular system. Under the dipole approximation, the Hamiltonian corresponding to the
interaction between the electric field intensity F and the PVDF molecular system can be
expressed as in Equation (2).
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Hint = −µ × F (2)

where µ is the molecular electric dipole moment and F is the electric field strength. The
whole calculation process is completed using the Gaussian09W software package; the
Multiwfn 3.7 software [29,30] and VMD 1.9.3 software [31] are used for further analysis.

2.2. Basic Model

The repeating unit of the PVDF polymer is CH2-CF2, as shown in Figure 1. PVDF
exhibits complex polymorphic characteristics, with five reported crystal structures, namely
α, β, γ, δ, and ε [32]. The main crystal structures are α, β, and γ [33], as shown in Figure 2.
The distinct crystal forms of PVDF display diverse properties, leading to varying physical
and chemical properties and applications [34]. Therefore, it is crucial to investigate the
impact of the different crystal structures on PVDF’s properties. The α phase is a thermo-
dynamically stable crystal structure at room temperature and atmospheric pressure [35],
and it is more stable than other phases in terms of thermodynamic properties; the most
common form of PVDF crystal is the non-polar α phase, which can be used as an insulation
material. However, it exhibits piezoelectric properties in the polar β phase and γ phase [36]
and is commonly used as a piezoelectric material. In this study, a semi-empirical method is
used to solve the simplified Schrodinger equation in order to describe the electron distri-
bution, molecular structure, and properties. Under the premise of meeting the accuracy
requirements, the PVDF molecules of the α-phase crystal form in Figure 2 are selected for
in-depth computational analysis.
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2.3. Molecular Model Computation

PVDF has a large molecular mass, and it is impractical as hundreds of thousands
of molecules are required to perform simulations under different electric field strengths.
In this study, models with different DPs were selected for pre-simulation. According to
the results, it was found that the degree of polymerization had little influence on the
results of the study. Combined with the previous analysis of the relationship between the
aggregation degree and consumption of machine time, it is found that the value of the
aggregation degree has little influence on the research content of this paper. Moreover,
the purpose of this work is to study the overall effect of an electric field on the polymer,
and an intramolecular study is not our primary purpose, so it is not necessary to use
molecular models with tens of thousands of degrees of polymerization. Therefore, the
α-phase molecular model of PVDF is constructed in this paper, as shown in Figure 3, to
simulate the microscopic mechanism of PVDF molecules under the action of an electric field.
Specific steps are as follows. The b3lyp/6-311g* method based on density functional theory
is used to optimize the geometric configuration of the initial molecular model of PVDF
(Figure 4b), and the stable conformation of molecules with the lowest energy is obtained.
The molecular model is shown in Figure 4c, and the energy minimization trend is shown in
Figure 4a, where gray represents carbon atoms, white represents hydrogen atoms, and blue
represents fluorine atoms. The same method and base group are used to apply values from
0 to 0.0175 a.u. (1 a.u. = 5.142 × 1011 V/m) along the horizontal direction of the molecular
chain, respectively. The optimization and single-point energy calculation are carried out,
and the microscopic mechanism of the electrical aging of PVDF materials is studied.
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First, the changes in molecular structure are judged by the bond length, dihedral angle,
and geometric structure. Then, the influence of the electric field on molecules is further deter-
mined by the molecular dipole moment, polarizability, molecular frontier orbital, and electro-
static potential surface. Finally, infrared spectra are used to verify the above conclusions.
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3. Simulation Results and Discussion
3.1. Effect of Applied Electric Field on Molecular Structure

Under the action of an external electric field, which is an electric dipole field, the
chemical bond length and dihedral angle in the molecules will change accordingly, so as to
characterize the change in the molecular geometric structure under the action of an electric
field. R(C1,C33) represents the distance between the leftmost and rightmost C atoms of
molecular chains, and D(C1,C17,C18,C33) represents the angle of twist of molecular chains.
The specific changes in the bond lengths and dihedral angles of PVDF molecules are shown
in Figure 5. The bond length of R(C1,C33) gradually increases with the increase in the
intensity of the external field, particularly when the intensity of the external field increases
from 0 to 8.7414 × 109 V/m (0.017 a.u.), which is due to the transfer of positive and negative
charges in the molecular system under the action of the electric field, producing the effect of
a certain stretching on the molecular chain. D(C1,C17,C18,C33) changed from −146.341◦ to
−174.769◦, which gradually stretched the molecular structure and reduced the stability of
the molecular geometric structure. The dashed circle represents that the chemical bond has
been broken, when no external electric field is added, as in Figure 6a. When the external
electric field is 8.7414 × 109 V/m (0.017 a.u.), the C-H and C-F bonds at the left and right
ends of the backbone are broken, as shown in Figure 6b. When the external electric field
reaches 8.9985 × 109 V/m (0.0175 a.u.), the internal molecular chain is broken, generating
free radicals, as shown in Figure 6c, and the insulation is completely broken down.
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3.2. Effect of External Electric Field on Total Molecular Energy, Dipole Moment, and Polarizability

The stability of the molecular system is related to the size of the total energy; the smaller
the total energy is, the worse the stability of the molecular system is. Dipole moments
and polarizability can characterize the spatial configuration and molecular polarity of
molecules to some extent. Figure 7 shows the variation in the total energy, dipole moment,
and polarizability of the PVDF molecular system with the electric field intensity. With
the increase in electric field intensity, the total energy of the molecular system decreases
gradually. This is because electrons are transferred along the electric field direction, making
the charge on each atom in the electric field direction larger, increasing the dipole moment
and polarizability of PVDF molecules. When the electric field intensity reaches above
8.2272 × 109 V/m (0.016 a.u.), the molecular structure appears to have a virtual frequency,
which means that the molecular structure has been damaged. Therefore, under the long-
term action of the electric field, the stability of the PVDF molecular chain system will
become worse. There is an upper limit for the molecular dipole moment. When the external
electric field is too large, the dipole moment will break through the limit value, causing the
electrons to eliminate the nucleus and form free electrons, which will eventually lead to the
breakdown of the insulating medium.
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3.3. Effect of External Electric Field on the Molecular Front Orbitals

In order to analyze the electronic motion characteristics of PVDF, the frontier orbital
energy level, energy gap (Eg), and orbital composition of molecules under different external
electric fields are calculated, respectively, and the calculation results of the energy level
and Eg are shown in Figure 8. The size of Eg is defined as the difference between the
energy levels of the lowest unoccupied orbital (LUMO) and the highest occupied orbital
(HOMO). According to the frontier orbital theory [37], the higher the energy of an electron
in the HOMO orbital of molecules, the less bound it is, and the easier it is for the electron
transition to occur. The lower the energy of the LUMO orbital, the easier it is to accept
electrons. Figure 8a shows that the HOMO energy level of PVDF increases with the increase
in the electric field strength, indicating that the electrons of its orbital are more prone to
transition. The LUMO energy level decreases continuously with the increase in electric
field strength, indicating that its orbital is easier to obtain electrons. The Eg reflects the
ability of electrons to transfer from occupied orbitals to empty ones. The smaller the Eg,
the more easily the electron is excited and the more reactive the molecule is. It can be seen
from Figure 8b that the Eg of PVDF gradually decreases with the increase in electric field
intensity, indicating that the activity of the chemical reaction of molecules is continuously
enhanced and the stability is reduced. When the electric field exceeds 6.1704 × 109 V/m
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(0.012 a.u.) in the simulation calculation, the optimization does not converge, indicating
that the structure is on the verge of failure.
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In order to analyze the microscopic change characteristics of the space charge inside
PVDF under a continuous electric field, this paper uses the changes in the trap energy level,
orbital cloud map, and electrostatic potential surface as a basis for discussion. Figure 9
shows the energy level distribution and frontier orbit map (MO) distribution of PVDF
when the electric field intensity is 0, 3.0852 × 109 V/m (0.006 a.u.), and 6.1704 × 109 V/m
(0.012 a.u.), respectively, which can more intuitively reflect the motion characteristics of
the space charge at the microscopic level. It can be seen from the distribution of MO
map that the HOMO orbital and the LUMO orbital are mainly concentrated on the left
end of the molecular chain before the electric field is applied, which is easily attacked by
electrophile reagents and electrophilic reactions occur. However, the effect of the external
electric field causes the distribution of the molecular front track to change greatly, and the
active reaction site of molecules also changes accordingly, as shown in Figure 9. When
the electric field strength is 3.0852 × 109 V/m (0.006 a.u.), the LUMO orbital shifts in
the opposite direction. When the electric field reaches 6.1704 × 109 V/m (0.012 a.u.), the
LUMO orbital moves towards the end of the chain, and the HOMO orbital also moves to
the left end of the chain. The left and right sides of the molecular chain show nucleophilic
and electrophilic activity, respectively. Without an external electric field, the electrostatic
potential distribution on the molecular surface is as shown in Figure 10a. When the electric
field reaches 6.1704 × 109 V/m (0.012 a.u.), the molecular chain shows a more positive
electrostatic potential at the left end and a more negative electrostatic potential at the right
end, as shown in Figure 10b, which also corresponds to the performance of the molecular
trap energy level mentioned above. This phenomenon indicates that the applied electric
field leads to the continuous decrease in the LUMO energy level and the increase in the
HOMO energy level, which will also change the active site of the PVDF reaction. When the
electric field reaches 6.1704 × 109 V/m (0.012 a.u.), the change in energy level distribution
is more obvious. At the same time, the HOMO and LUMO orbital energy levels are very
close, and the Eg between the HOMO orbital and LUMO orbital is only 0.95eV. At this time,
PVDF will be in the semiconductor state. Electrons can move freely in the valence band and
the conduction band to form a current, and the insulation performance of PVDF will fail.
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To further predict the active reaction sites of molecules, the Hirshfeld method in
Multiwfn 3.7 is used for electric field intensities of 0 and 6.1704 × 109 V/m (0.012 a.u.). The
contribution of each atomic orbital in the frontier orbital composition of PVDF is analyzed,
and the results are shown in Table 1. According to the previous analysis, under the action
of an external electric field, the HOMO and LUMO orbitals of molecules move to both ends
of the molecular chain, respectively. When the electric field strength is 6.1704 × 109 V/m
(0.012 a.u.), the HOMO and LUMO orbitals are essentially concentrated on both ends of the
molecules, enhancing the reaction activity of the molecular chain end. It can be found from
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Table 1 that the HOMO orbital of PVDF is mainly contributed by C and H atoms on the left
side of the molecular chain, among which the contribution of C1, C5, C8, and C9 atoms is
51.15%, and the contribution of H4, H2, and H6 atoms is 33.16%. This indicates that C1, C5,
C8, and C9 and H4, H2, and H6 atoms have strong reactivity on the left side of the PVDF
molecular chain. Similarly, the main contribution of the LUMO orbital comes from the C
atom and F atom on the right side of the molecular chain, of which the contribution rate of
C33 and F50 atoms reaches 33.89% and 38.89%, respectively. At this time, the C-H bond
on the left side and the C-F bond on the right side of the PVDF molecular chain are on the
verge of fracture. This corresponds to the case of the breaking of the chemical bonds of the
molecules, shown in Figure 6b.

Table 1. Front track composition.

0 V/m 6.1704 × 109 V/m

HOMO/% LUMO/% HOMO/% LUMO/%

C9 9.12% H2 14.24% C1 26.22% F50 38.39%
C8 8.97% H6 10.48% H4 14.03% C33 33.89%

C10 6.26% C5 10.05% C5 13.34% F49 6.70%
F35 6.12% C8 9.15% H2 9.96% F48 6.50%
C5 5.87% H7 6.43% H6 9.17% C32 4.82%
F36 5.66% C9 6.39% C8 7.22% F46 4.04%
C16 5.39% H3 5.53% C9 4.37% F47 3.41%

The density of states (DOS) mainly refers to the density of the distribution of molecular
orbitals at different energy levels. The density of molecular states can intuitively reflect the
distribution of hole traps and the electron trap energy level density of molecular orbitals,
and each peak can represent the distribution of a trap energy level [38]. The HOMO
and LUMO orbital energy levels correspond to the positions of the valence band top and
conduction band bottom, respectively. Under the action of an electric field, a certain amount
of deep traps and distribution of the shallow trap energy level appear near the valence band
and the conduction band, as shown in Figure 11. With the continuous action of the electric
field, the density of trap energy levels formed by molecular orbitals will further increase.
The HOMO orbital energy level shifts to a higher energy level, which introduces more
hole traps near the valence band. The LUMO orbital energy level moves to the direction
of the lower energy level, and more electron traps are introduced near the conduction
band. Finally, the number of electron traps is higher than the number of hole traps. This
difference between the number of holes and electron traps can indicate that the effect of the
electric field will strengthen the ability for electronic transition inside PVDF, and it is easier
to capture the free electrons or injected charges in the insulation material.

3.4. Effect of External Electric Field on Infrared Spectra

The infrared spectra of PVDF under different electric field intensities are shown in
Figures 12 and 13. The infrared spectra of molecules under a low electric field intensity
and high electric field intensity are compared with the infrared spectra under the condition
of no electric field as the reference. As can be seen from Figure 12, when the electric field
intensity is below 7.713 × 109 V/m (0.015 a.u.), the infrared spectrum does not change
greatly, indicating that the intensity of the low electric field has little influence on the
molecular structure, and the molecular system still maintains the stability of the structure.
However, when the electric field intensity is above 8.2272 × 109 V/m (0.016 a.u.), the
infrared spectrogram changes greatly, as shown in Figure 13. The main difference is that
the peak value of absorption fluctuates greatly, the infrared activity of the vibration mode
in many intervals is significantly enhanced, and the peak value of the corresponding
absorption peak is significantly increased. The stretching vibration is intensified at C-H at
2949 cm−1 and C-F at 678 cm−1 at the end. Virtual frequency does not represent any real
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vibration; when the structure of the molecules is no longer stable, virtual frequency will
appear in the infrared spectrum. When the electric field intensity continues to increase,
the virtual frequency appears in the infrared spectrum, indicating that the structure of
molecules is not stable and structural damage has occurred. The critical external electric
field of the molecular space’s structural destruction is the starting point of insulation
material aging, which will inevitably lead to the destruction of cable dielectric materials,
thereby reducing the electrical strength of cables and finally causing the polymer insulation
breakdown phenomenon.
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4. Conclusions

The density functional method was utilized to investigate the microscopic charac-
teristics of molecules inside the dielectric system of a PVDF cable under the influence
of an external electric field. The effects of electric field intensity on the molecular struc-
ture, the total energy of PVDF materials, the polarization phenomena, the energy gap,
and the infrared spectra were examined. The formation mechanism of electric branches
within the cable’s dielectric system was analyzed at the microscopic level, leading to the
following conclusions.

(1) It can be seen from the change in the orbital energy of the molecular front that with
the increase in the electric field, the activity is enhanced, and the physicochemical reaction
is more likely to occur, which destroys the optimal, stable structure of molecules, so the
corresponding infrared spectra will also change.

(2) Under the influence of the external electric field, the dipoles of PVDF molecules
rotated in a directional manner, generating an equivalent polarized space charge inside
the cable’s dielectric system. A higher polarization rate and polarization space charge
density were observed with an increased electric field intensity, which had an impact on
the dielectric insulation performance.

(3) Strong electric fields were found to cause the cleavage and breakage of PVDF
molecular chains, with the C-H and C-F bonds at the ends of the molecular chain being the
first to break. From the front track and electrostatic potential surface, it was inferred that
these chemical bonds had strong chemical reactivity and were more susceptible to reaction.
Future modification technology may help to prevent breakdown at these weak points [39].
These findings can provide theoretical support for relevant practical engineering tests and
targeted testing conditions, rather than blindly imposing external test conditions.
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