Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. PPy-Based Electrode Preparation
2.2. Electrochemical and Spectroscopic Characterization
2.3. Supercapacitor Assembly
2.4. Supercapacitive Characterization
3. Results and Discussion
3.1. PPy-Based Electrodes in Different Aqueous Electrolytes
3.2. The Frozen-State Polymerized PPy with Dyes and Its Capacitive Performance
3.3. Spectroscopy Study
3.4. Supercapacitor Assembly
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Zhu, T.; Shen, L.; Liu, Y.; Zhang, D.; Zheng, B.; Gong, K.; Zheng, J.; Gong, X. Recent progress in the all-solid-state flexible supercapacitors. SmartMat 2022, 3, 349–383. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Lübben, J.F. Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications. Gels 2023, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, W.; Shi, M.; Li, H.; Ma, L.; Niu, H. Morphology controllable synthesis of heteroatoms-doped carbon materials for high-performance flexible supercapacitor. Dyes Pigment 2022, 199, 109968. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Fan, L.; Zheng, W.; Ye, D.; Xu, J. Polypyrrole/SnCl2 modified bacterial cellulose electrodes with high areal capacitance for flexible supercapacitors. Carbohydr. Polym. 2022, 292, 119679. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Yu, J.; Tian, F.; Luo, X.; Hao, Y.; Huang, J.; Wang, F.; Zhou, W.; Xu, J.; et al. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes. Polymers 2023, 15, 1856. [Google Scholar] [CrossRef]
- Yasami, S.; Mazinani, S.; Abdouss, M. Developed composites materials for flexible supercapacitors electrode: “Recent progress & future aspects”. J. Energy Storage 2023, 72, 108807. [Google Scholar] [CrossRef]
- Chang, X.; Lin, C.-W.; Huang, A.; El-Kady, M.F.; Kaner, R.B. Molecular Engineering of Hierarchical Conducting Polymer Composites for Highly Stable Supercapacitors. Nano Lett. 2023, 23, 3317–3325. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, X.; Li, N.; Zhang, S.; Liu, C.; Xi, M.; Iqbal, O.; Ali, S.; Wang, Z. Enhancing energy storage capacity of supercapacitors via constructing a porous PPy/carbon cloth electrode by a template-assisted method. J. Energy Storage 2023, 72, 108312. [Google Scholar] [CrossRef]
- Liu, J.; Xu, D.; Liu, Q.; Li, S.; Wang, D.; Zheng, Z. Structural evolution of carbon foam and its effect on polypyrrole/carbon foam composite electrodes in supercapacitors. Compos. Part A Appl. Sci. Manuf. 2023, 174, 107734. [Google Scholar] [CrossRef]
- Dianatdar, A.; Mukherjee, A.; Bose, R.K. Oxidative chemical vapor deposition of polypyrrole onto carbon fabric for flexible supercapacitive electrode material. Synth. Met. 2023, 298, 117444. [Google Scholar] [CrossRef]
- Ma, X.; Shi, X.; Wang, Y.; Xiong, W.; Xiong, C.; Yang, J.; You, L.; Wang, S. Stretchable porous conductive hydrogel films prepared by emulsion template method as flexible sensors. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132272. [Google Scholar] [CrossRef]
- Ren, H.; Sun, R.; Jin, Y.; Xu, M.; Pei, Y.; Wang, Q.; Yan, M. Electrochemical Properties of Multi-Morphology Polypyrrole Electrode Materials Depended on Template Agents. ChemistrySelect 2023, 8, e202302155. [Google Scholar] [CrossRef]
- Naseeb, I.; Almashhadani, H.A.; Macadangdang, R.R., Jr.; Ullah, S.; Khan, M.F.; Kamran, M.; Qureshi, N.; Naseeb, F. Interfacial polymerization synthesis of polypyrrole and sodium metavanadate (PPy/NaVO3) composite as an excellent performance electrode for supercapacitors. Results Chem. 2022, 4, 100446. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, D.; Zhang, A.; Tian, J.; Zheng, Y.; Zhao, W.; Cui, L.; Liu, J. Synthesis of polypyrrole coated melamine foam by in-situ interfacial polymerization method for highly compressible and flexible supercapacitor. J. Colloid Interface Sci. 2019, 557, 617–627. [Google Scholar] [CrossRef]
- Masri, K.; Kalaleh, H.A.; Alhassan, A. Fabrication of Sensitive and Selective Ammonia Gas Sensors Based on Pyrrole Interfacial Polymerization. J. Electron. Mater. 2019, 48, 5967–5974. [Google Scholar] [CrossRef]
- Namhongsa, M.; Daranarong, D.; Sriyai, M.; Molloy, R.; Ross, S.; Ross, G.M.; Tuantranont, A.; Tocharus, J.; Sivasinprasasn, S.; Topham, P.D.; et al. Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning. Biomacromolecules 2022, 23, 4532–4546. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, G.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog. Mater. Sci. 2021, 115, 100704. [Google Scholar] [CrossRef]
- Yu, M.; Li, Y.; Xu, S.; Li, J.; Wang, L. Growing spherical polypyrrole nanoparticles onto the magnetic carbon aerogel for improving electrochemical performance for supercapacitors. J. Porous Mater. 2021, 28, 1999–2011. [Google Scholar] [CrossRef]
- Yue, T.; Douka, A.I.; Qi, K.; Qiu, Y.; Guo, X.; Xia, B.Y. Flexible and hollow polypyrrole foam with high loading of metal–organic framework nanowires for wearable supercapacitors. J. Mater. Chem. A 2021, 9, 21799–21806. [Google Scholar] [CrossRef]
- Xue, J.; Yang, Q.; Guan, R.; Shen, Q.; Liu, X.; Jia, H.; Li, Q. High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Mater. Chem. Phys. 2020, 256, 123591. [Google Scholar] [CrossRef]
- Lima, R.M.A.P.; dos Reis, G.S.; Lassi, U.; Lima, E.C.; Dotto, G.L.; de Oliveira, H.P. Sustainable Supercapacitors Based on Polypyrrole-Doped Activated Biochar from Wood Waste Electrodes. C 2023, 9, 59. [Google Scholar] [CrossRef]
- Xiong, Z.; Fang, Z.; Ding, Z.; Li, G.; Zhou, J.; Chen, K.; Yang, D.; Qiu, X. A Novel Strategy to Enhance the Electrochemical Performance of Polypyrrole-Coated Paper-Based Supercapacitor. Macromol. Mater. Eng. 2022, 307, 2200359. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, B.; Zhang, D.; Yang, M.; Huang, X.; Han, L.; Chen, K.; Li, X.; Pang, R.; Shang, Y.; et al. Conductive hydrogels incorporating carbon nanoparticles: A review of synthesis, performance and applications. Particuology 2023, 83, 212–231. [Google Scholar] [CrossRef]
- Shen, C.; Chen, Y.; Feng, B.; Chi, H.; Zhang, H. Polypyrrole Hollow Nanotubes Loaded with Au and Fe3O4 Nanoparticles for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Chem. Res. Chin. Univ. 2022, 38, 941–948. [Google Scholar] [CrossRef]
- Wei, F.; Zhong, Y.; Luo, H.; Wu, Y.; Fu, J.; He, Q.; Cheng, J.; Na, J.; Yamauchi, Y.; Liu, S. Soft template-mediated coupling construction of sandwiched mesoporous PPy/Ag nanoplates for rapid and selective NH3 sensing. J. Mater. Chem. A 2021, 9, 8308–8316. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, C.; Wang, G.; Suo, H.; He, D.; Yang, S.; Ding, J. In-situ fabrication of carbon cloth-supported polypyrrole-platinum nanosheets for the electrochemical detection of ammonia–nitrogen. Mater. Lett. 2021, 305, 130767. [Google Scholar] [CrossRef]
- Murugesan, B.; Pandiyan, N.; Arumugam, M.; Sonamuthu, J.; Samayanan, S.; Yurong, C.; Juming, Y.; Mahalingam, S. Fabrication of palladium nanoparticles anchored polypyrrole functionalized reduced graphene oxide nanocomposite for antibiofilm associated orthopedic tissue engineering. Appl. Surf. Sci. 2020, 510, 145403. [Google Scholar] [CrossRef]
- Malere, C.P.R.; Donati, B.; Eras, N.; Silva, V.A.; Lona, L.F. Electromagnetic evaluation of radar absorbing materials based on conducting polypyrrole and organic–inorganic nanocomposite of polypyrrole/kaolinite. J. Appl. Polym. Sci. 2021, 139, 52023. [Google Scholar] [CrossRef]
- Mrah, L.; Meghabar, R. Influence of clay modification process in polypyrrole-layered silicate nanocomposite. SN Appl. Sci. 2020, 2, 659. [Google Scholar] [CrossRef]
- Fu, X.; Wang, J.K.; Ramírez-Pérez, A.C.; Choong, C.; Lisak, G. Flexible conducting polymer-based cellulose substrates for on-skin applications. Mater. Sci. Eng. C 2020, 108, 110392. [Google Scholar] [CrossRef]
- Ruan, Y.; Chen, L.; Cui, L.; An, Q. PPy-Modified Prussian Blue Cathode Materials for Low-Cost and Cycling-Stable Aqueous Zinc-Based Hybrid Battery. Coatings 2022, 12, 779. [Google Scholar] [CrossRef]
- Heybet, E.N.; Ugraskan, V.; Isik, B.; Yazici, O. Adsorption of methylene blue dye on sodium alginate/polypyrrole nanotube composites. Int. J. Biol. Macromol. 2021, 193, 88–99. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, A.; Basha, D.B.; Hussain, S.; Uddin, I.; Gondal, M.A. Critical review on recent developments in conducting polymer nanocomposites for supercapacitors. Synth. Met. 2023, 295, 117326. [Google Scholar] [CrossRef]
- Han, Y.; Dai, L. Conducting Polymers for Flexible Supercapacitors. Macromol. Chem. Phys. 2019, 220, 1800355. [Google Scholar] [CrossRef]
- Minisy, I.M.; Acharya, U.; Kobera, L.; Trchová, M.; Unterweger, C.; Breitenbach, S.; Brus, J.; Pfleger, J.; Stejskal, J.; Bober, P. Highly conducting 1-D polypyrrole prepared in the presence of safranin. J. Mater. Chem. C 2020, 8, 12140–12147. [Google Scholar] [CrossRef]
- Minisy, I.M.; Bober, P. Frozen-State Polymerization as a Tool in Conductivity Enhancement of Polypyrrole. Macromol. Rapid Commun. 2020, 41, 2000364. [Google Scholar] [CrossRef]
- Minisy, I.M.; Bober, P.; Šeděnková, I.; Stejskal, J. Methyl red dye in the tuning of polypyrrole conductivity. Polymer 2020, 207, 122854. [Google Scholar] [CrossRef]
- Minisy, I.M.; Bober, P.; Acharya, U.; Trchová, M.; Hromádková, J.; Pfleger, J.; Stejskal, J. Cationic dyes as morphology-guiding agents for one-dimensional polypyrrole with improved conductivity. Polymer 2019, 174, 11–17. [Google Scholar] [CrossRef]
- Tumacder, D.V.; Morávková, Z.; Minisy, I.M.; Hromádková, J.; Bober, P. Electropolymerized polypyrrole/safranin-O films: Capacitance enhancement. Polymer 2021, 230, 124099. [Google Scholar] [CrossRef]
- Roohi, Z.; Mighri, F.; Zhang, Z. A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment. Polymers 2022, 14, 4693. [Google Scholar] [CrossRef]
- Li, Y.; Bober, P.; Trchová, M.; Stejskal, J. Polypyrrole prepared in the presence of methyl orange and ethyl orange: Nanotubes versus globules in conductivity enhancement. J. Mater. Chem. C 2017, 17, 4236–4245. [Google Scholar] [CrossRef]
- Hryniewicz, B.M.; Lima, R.V.; Wolfart, F.; Vidotti, M. Influence of the pH on the electrochemical synthesis of polypyrrole nanotubes and the supercapacitive performance evaluation. Electrochim. Acta 2019, 293, 447–457. [Google Scholar] [CrossRef]
- Bober, P.; Li, Y.; Acharya, U.; Panthi, Y.; Pfleger, J.; Humpolíček, P.; Trchová, M.; Stejskal, J. Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synth. Met. 2018, 237, 40–49. [Google Scholar] [CrossRef]
- Tumacder, D.V.; Morávková, Z.; Bober, P. Enhanced electrochemical performance of electrosynthesized fibrillar polypyrrole film. Mater. Lett. 2022, 308, 131295. [Google Scholar] [CrossRef]
- Tumacder, D.V.; Morávková, Z.; Konefał, M.; Salapare, H.S.; Guittard, F.; Bober, P. Effect of Acid Blue dyes on the electrochemical capacitance of polypyrrole. Mater. Res. Bull. 2023, 168, 112455. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018, 72, 1563–1595. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M.; Bober, P.; Morávková, Z.; Kopecký, D.; Vrňata, M.; Prokeš, J.; Varga, M.; Watzlová, E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016, 6, 88382–88391. [Google Scholar] [CrossRef]
- Abdul Bashid, H.A.; Lim, H.N.; Kamaruzaman, S.; Rashid, S.A.; Yunus, R.; Huang, N.M.; Yin, C.Y.; Rahman, M.M.; Altarawneh, M.; Jiang, Z.T.; et al. Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor. Nanoscale Res. Lett. 2017, 12, 246. [Google Scholar] [CrossRef]
- Ramachandran, R.; Wang, F. Electrochemical Capacitor Performance: Influence of Aqueous Electrolytes. In Supercapacitors—Theoretical and Practical Solutions; InTech Open: London, UK, 2017. [Google Scholar] [CrossRef]
- Yunita, A.; Farma, R.; Awitdrus, A.; Apriyani, I. The effect of various electrolyte solutions on the electrochemical properties of the carbon electrodes of supercapacitor cells based on biomass waste. Mater. Today Proc. 2023, 87, 246–252. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhang, W.; Fei, G.; Shu, K.; Sun, L.; Tian, S.; Niu, H.; Wang, M.; Hu, G.; et al. A Simple Route to Fabricate Ultralong and Uniform Polypyrrole Nanowires with High Electrochemical Capacitance for Supercapacitor Electrodes. ACS Appl. Polym. Mater. 2023, 5, 1254–1263. [Google Scholar] [CrossRef]
- Mi, H.; Zhang, X.; Ye, X.; Yang, S. Preparation and enhanced capacitance of core–shell polypyrrole/polyaniline composite electrode for supercapacitors. J. Power Sources 2008, 176, 403–409. [Google Scholar] [CrossRef]
- Mei, B.A.; Lau, J.; Lin, T.; Tolbert, S.H.; Dunn, B.S.; Pilon, L. Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage. J. Phys. Chem. C 2018, 122, 24499–24511. [Google Scholar] [CrossRef]
- Harrington, D.A.; Driessche, P.V. Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim. Acta 2011, 56, 8005–8013. [Google Scholar] [CrossRef]
- Zhu, A.; Sun, X.; Gao, X.; Wang, J.; Zhao, N.; Sha, J. Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning. J. Electroanal. Chem. 2019, 855, 113627. [Google Scholar] [CrossRef]
- Ebrahim, S.M.; Latif, M.A.-E.; Gad, A.; Soliman, M. Cyclic voltammetry and impedance studies of electrodeposited polypyrrole nanoparticles doped with 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt. Thin Solid Films 2010, 518, 4100–4105. [Google Scholar] [CrossRef]
- Policastro, S.A.; Anderson, R.M.; Hangarter, C.M.; Arcari, A.; Iezzi, E.B. Incorporating Physics-Based Models into Equivalent Circuit Analysis of EIS Data from Organic Coatings. Coatings 2023, 13, 1285. [Google Scholar] [CrossRef]
- Morávková, Z.; Taboubi, O.; Minisy, I.M.; Bober, P. The evolution of the molecular structure of polypyrrole during chemical polymerization. Synth. Met. 2021, 271, 116608. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, L.; Chen, L.Y.; Liu, P.; Hirata, A.; Chen, M.W. Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold. Phys. Chem. Chem. Phys. 2014, 16, 3523–3528. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, Y.; Wang, J.; Wang, J.; Bai, Y.; Du, X. Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor. Phys. Chem. Chem. Phys. 2015, 17, 19885–19894. [Google Scholar] [CrossRef]
- Ng, C.H.; Lim, H.N.; Lim, Y.S.; Chee, W.K.; Huang, N.M. Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int. J. Energy Res. 2015, 39, 344–355. [Google Scholar] [CrossRef]
- Xu, J.; Wang, D.; Fan, L.; Yuan, Y.; Wei, W.; Liu, R.; Gu, S.; Xu, W. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org. Electron. 2015, 26, 292–299. [Google Scholar] [CrossRef]
- Wang, Z.; Carlsson, D.O.; Tammela, P.; Hua, K.; Zhang, P.; Nyholm, L.; Strømme, M. Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. ACS Nano 2015, 9, 7563–7571. [Google Scholar] [CrossRef]
- Karaca, E.; Gökcen, D.; Pekmez, N.Ö.; Pekmez, K. Electrochemical synthesis of PPy composites with nanostructured MnOx, CoOx, NiOx, and FeOx in acetonitrile for supercapacitor applications. Electrochim. Acta 2019, 305, 502–513. [Google Scholar] [CrossRef]
- Bo, J.; Luo, X.; Huang, H.; Li, L.; Lai, W.; Yu, X. Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J. Power Sources 2018, 407, 105–111. [Google Scholar] [CrossRef]
- Singu, B.S.; Yoon, K.R. Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim. Acta 2018, 268, 304–315. [Google Scholar] [CrossRef]
- Dubey, P.; Maheshwari, P.H.; Sundriyal, S. Human Hair-Derived Porous Activated Carbon as an Efficient Matrix for Conductive Polypyrrole for Hybrid Supercapacitors. Energy Fuels 2022, 36, 13218–13228. [Google Scholar] [CrossRef]
- Wang, F.; Du, H.; Liu, Y.; Huang, H.; Yu, X.; Zhu, X.; Li, L. Elastic polypyrrole hydrogels reinforced by TEMPO-oxidized cellulose for supercapacitors. Synth. Met. 2021, 282, 116952. [Google Scholar] [CrossRef]
- Wei, D.; Zhu, J.; Luo, L.; Huang, H.; Li, L.; Yu, X. Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. J. Mater. Sci. 2020, 55, 11779–11791. [Google Scholar] [CrossRef]
, mV s−1 | C, F g−1 | J, A g−1 | C, F g−1 | E, Wh kg−1 | P, W kg−1 | |||
---|---|---|---|---|---|---|---|---|
Normal | Folded | Normal | Folded | Normal | Folded | |||
10 | 122 | 105 | 1.5 | 116 | 107 | 16 | 15 | 3026 |
20 | 120 | 106 | 1.9 | 111 | 102 | 15 | 14 | 3782 |
50 | 106 | 97 | 2.3 | 106 | 97 | 15 | 14 | 4539 |
100 | 89 | 83 | 2.6 | 102 | 93 | 14 | 13 | 5295 |
200 | 64 | 62 | 3.0 | 97 | 88 | 14 | 12 | 6052 |
3.4 | 93 | 83 | 13 | 12 | 6808 | |||
3.8 | 88 | 79 | 12 | 11 | 7565 | |||
4.5 | 78 | 69 | 11 | 10 | 9077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumacder, D.V.; Minisy, I.M.; Taboubi, O.; Bober, P. Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors. Polymers 2023, 15, 4140. https://doi.org/10.3390/polym15204140
Tumacder DV, Minisy IM, Taboubi O, Bober P. Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors. Polymers. 2023; 15(20):4140. https://doi.org/10.3390/polym15204140
Chicago/Turabian StyleTumacder, Doebner Von, Islam M. Minisy, Oumayma Taboubi, and Patrycja Bober. 2023. "Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors" Polymers 15, no. 20: 4140. https://doi.org/10.3390/polym15204140
APA StyleTumacder, D. V., Minisy, I. M., Taboubi, O., & Bober, P. (2023). Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors. Polymers, 15(20), 4140. https://doi.org/10.3390/polym15204140