Influence of Glycerol and SISAL Microfiber Contents on the Thermal and Tensile Properties of Thermoplastic Starch Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sisal Microfibers
2.3. Preparation of Composites
2.4. Fourier Transform Infrared Spectroscopy
2.5. Thermogravimetric Analysis
2.6. X-ray Diffraction
2.7. Scanning Electron Microscopy
2.8. Tensile Properties
3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy
3.2. Thermogravimetric Analysis
3.3. Scanning Electron Microscopy
3.4. X-ray Diffraction
3.5. Tensile Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morro, A.; Catalina, F.; Corrales, T.; Pablos, J.L.; Marin, I.; Abrusci, C. New Blends of Ethylene-Butyl Acrylate Copolymers with Thermoplastic Starch. Characterization and Bacterial Biodegradation. Carbohydr. Polym. 2016, 149, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Rico, M.; Rodríguez-Llamazares, S.; Barral, L.; Bouza, R.; Montero, B. Processing and Characterization of Polyols Plasticized-Starch Reinforced with Microcrystalline Cellulose. Carbohydr. Polym. 2016, 149, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-F.; Rhim, J.-W.; Hong, S.-I. Preparation of Poly(Lactide)/Poly(Butylene Adipate-Co-Terephthalate) Blend Films Using a Solvent Casting Method and Their Food Packaging Application. LWT Food Sci. Technol. 2016, 68, 454–461. [Google Scholar] [CrossRef]
- Yang, N.; Gao, W.; Zou, F.; Tao, H.; Guo, L.; Cui, B.; Lu, L.; Fang, Y.; Liu, P.; Wu, Z. The Relationship between Molecular Structure and Film-Forming Properties of Thermoplastic Starches from Different Botanical Sources. Int. J. Biol. Macromol. 2023, 230, 123114. [Google Scholar] [CrossRef]
- Promsorn, J.; Harnkarnsujarit, N. Oxygen Absorbing Food Packaging Made by Extrusion Compounding of Thermoplastic Cassava Starch with Gallic Acid. Food Control 2022, 142, 109273. [Google Scholar] [CrossRef]
- Hadimani, S.; Supriya, D.; Roopa, K.; Soujanya, S.K.; Rakshata, V.; Netravati, A.; Akshayakumar, V.; De Britto, S.; Jogaiah, S. Biodegradable Hybrid Biopolymer Film Based on Carboxy Methyl Cellulose and Selenium Nanoparticles with Antifungal Properties to Enhance Grapes Shelf Life. Int. J. Biol. Macromol. 2023, 237, 124076. [Google Scholar] [CrossRef]
- Sarasini, F.; Fiore, V. A Systematic Literature Review on Less Common Natural Fibres and Their Biocomposites. J. Clean. Prod. 2018, 195, 240–267. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, F.; Zhang, T.; Chen, L.; Li, X.; Truss, R.W.; Halley, P.J.; Shamshina, J.L.; McNally, T.; Rogers, R.D. Different Characteristic Effects of Ageing on Starch-Based Films Plasticised by 1-Ethyl-3-Methylimidazolium Acetate and by Glycerol. Carbohydr. Polym. 2016, 146, 67–79. [Google Scholar] [CrossRef]
- Boonsuk, P.; Sukolrat, A.; Bourkaew, S.; Kaewtatip, K.; Chantarak, S.; Kelarakis, A.; Chaibundit, C. Structure-Properties Relationships in Alkaline Treated Rice Husk Reinforced Thermoplastic Cassava Starch Biocomposites. Int. J. Biol. Macromol. 2021, 167, 130–140. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y.; Lin, Z.; Li, J.; Jiang, G. Effects of Tartaric Acid Contents on Phase Homogeneity, Morphology and Properties of Poly (Butyleneadipate-Co-Terephthalate)/Thermoplastic Starch Bio-Composities. Polym. Test. 2019, 76, 385–395. [Google Scholar] [CrossRef]
- Almeida, T.; Karamysheva, A.; Valente, B.F.A.; Silva, J.M.; Braz, M.; Almeida, A.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Biobased Ternary Films of Thermoplastic Starch, Bacterial Nanocellulose and Gallic Acid for Active Food Packaging. Food Hydrocoll. 2023, 144, 108934. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, F.; Tao, H.; Gao, W.; Guo, L.; Cui, B.; Yuan, C.; Liu, P.; Lu, L.; Wu, Z.; et al. Effects of Different Sources of Cellulose on Mechanical and Barrier Properties of Thermoplastic Sweet Potato Starch Films. Ind. Crop. Prod. 2023, 194, 116358. [Google Scholar] [CrossRef]
- Koh, A.Y.M.; Nor, F.M.; Ramesh, S.; Kurniawan, D. Plasticisers for Edible Packaging Made of Thermoplastic Sago Starch. Mater. Today Proc. 2023, 1, 1–3. [Google Scholar] [CrossRef]
- Castillo, L.A.; López, O.V.; García, M.A.; Barbosa, S.E.; Villar, M.A. Crystalline Morphology of Thermoplastic Starch/Talc Nanocomposites Induced by Thermal Processing. Heliyon 2019, 5, e01877. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Monje, A.; Alonso-Romero, S.; Zitzumbo-Guzmán, R.; Estrada-Moreno, I.A.; Zaragoza-Contreras, E.A. Thermoplastic Starch-Based Blends with Improved Thermal and Thermomechanical Properties. Polymers 2021, 13, 4263. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shull, K.R. Controlling the Properties of Thermoplastic Starch Films with Hydrogen Bonding Plasticizers. Carbohydr. Polym. Technol. Appl. 2023, 5, 100291. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y.; Zhang, Z.; Ye, C.; Chen, Y.; Wei, P.; Wang, Y.; Xia, Y. Thermoplastic Starch Plasticized by Polymeric Ionic Liquid. Eur. Polym. J. 2021, 148, 110367. [Google Scholar] [CrossRef]
- Mina, H.J.H. Caracterización Físico-Mecánica De Un Almidón Termoplástico (Tps) De Yuca Y Análisis Interfacial Con Fibras De Fique. Biotecnol. En El Sect. Agropecu. Agroind. 2012, 10, 99–109. [Google Scholar]
- Cyras, V.P.; Manfredi, L.B.; Ton-That, M.-T.; Vázquez, A. Physical and Mechanical Properties of Thermoplastic Starch/Montmorillonite Nanocomposite Films. Carbohydr. Polym. 2008, 73, 55–63. [Google Scholar] [CrossRef]
- Rahardiyan, D.; Moko, E.M.; Tan, J.S.; Lee, C.K. Thermoplastic Starch (TPS) Bioplastic, the Green Solution for Single-Use Petroleum Plastic Food Packaging—A Review. Enzyme Microb. Technol. 2023, 168, 110260. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yu, J.; Ma, X. Study on the Properties of Ethylenebisformamide and Sorbitol Plasticized Corn Starch (ESPTPS). Carbohydr. Polym. 2006, 66, 110–116. [Google Scholar] [CrossRef]
- Souza, A.C.; Benze, R.; Ferrão, E.S.; Ditchfield, C.; Coelho, A.C.V.; Tadini, C.C. Cassava Starch Biodegradable Films: Influence of Glycerol and Clay Nanoparticles Content on Tensile and Barrier Properties and Glass Transition Temperature. LWT Food Sci. Technol. 2012, 46, 110–117. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Spychaj, T.; Mąka, H. Imidazole-Based Deep Eutectic Solvents for Starch Dissolution and Plasticization. Carbohydr. Polym. 2016, 140, 416–423. [Google Scholar] [CrossRef]
- Lai, D.S.; Osman, A.F.; Adnan, S.A.; Ibrahim, I.; Ahmad Salimi, M.N.; Jaafar@Mustapha, M. Toughening Mechanism of Thermoplastic Starch Nano-Biocomposite with the Hybrid of Nanocellulose/Nanobentonite. Polymer 2023, 274, 125876. [Google Scholar] [CrossRef]
- Vinícius da Silva Paula, M.; Araújo de Azevedo, L.; Diego de Lima Silva, I.; Brito da Silva, C.A.; Vinhas, G.M.; Alves, S. Gamma Radiation Effect on the Chemical, Mechanical and Thermal Properties of PCL/MCM-48-PVA Nanocomposite Films. Heliyon 2023, 9, e18091. [Google Scholar] [CrossRef]
- Saba, N.; Tahir, P.M.; Jawaid, M. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers 2014, 6, 2247–2273. [Google Scholar] [CrossRef]
- Puttegowda, M.; Rangappa, S.M.; Jawaid, M.; Shivanna, P.; Basavegowda, Y.; Saba, N. 15–Potential of Natural/Synthetic Hybrid Composites for Aerospace Applications. In Sustainable Composites for Aerospace Applications; Jawaid, M., Thariq, M., Eds.; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing: London, UK, 2018; pp. 315–351. ISBN 978-0-08-102131-6. [Google Scholar]
- Santos, G.Z.B.D.; Caldas, L.R.; Melo Filho, J.D.A.; Monteiro, N.B.R.; Rafael, S.I.M.; Marques Da Silva, N. Circular Alternatives in the Construction Industry: An Environmental Performance Assessment of Sisal Fiber-Reinforced Composites. J. Build. Eng. 2022, 54, 104603. [Google Scholar] [CrossRef]
- Martin, A.R.; Martins, M.A.; Mattoso, L.H.C.; Silva, O.R.R.F. Caracterização química e estrutural de fibra de sisal da variedade Agave sisalana. Polímeros 2009, 19, 40–46. [Google Scholar] [CrossRef]
- Raju, J.S.N.; Depoures, M.V.; Kumaran, P. Comprehensive Characterization of Raw and Alkali (NaOH) Treated Natural Fibers from Symphirema Involucratum Stem. Int. J. Biol. Macromol. 2021, 186, 886–896. [Google Scholar] [CrossRef]
- Kenned, J.J.; Sankaranarayanasamy, K.; Kumar, C.S. Chemical, Biological, and Nanoclay Treatments for Natural Plant Fiber-Reinforced Polymer Composites: A Review. Polym. Polym. Compos. 2021, 29, 1011–1038. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Zuluaga, R.; Putaux, J.L.; Cruz, J.; Vélez, J.; Mondragon, I.; Gañán, P. Cellulose Microfibrils from Banana Rachis: Effect of Alkaline Treatments on Structural and Morphological Features. Carbohydr. Polym. 2009, 76, 51–59. [Google Scholar] [CrossRef]
- Saheb, D.N.; Jog, J.P. Natural Fiber Polymer Composites: A Review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Cardoso, P.H.M.; Bastian, F.L.; Thiré, R.M.S.M. Curaua Fibers/Epoxy Laminates with Improved Mechanical Properties: Effects of Fiber Treatment Conditions. Macromol. Symp. 2014, 344, 63–70. [Google Scholar] [CrossRef]
- Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Available online: https://www.astm.org/d0882-02.html (accessed on 29 August 2023).
- Pinheiro, M.A.; Ribeiro, M.M.; Rosa, D.L.S.; Nascimento, D.d.C.B.; da Silva, A.C.R.; dos Reis, M.A.L.; Monteiro, S.N.; Candido, V.S. Periquiteira (Cochlospermum Orinocense): A Promising Amazon Fiber for Application in Composite Materials. Polymers 2023, 15, 2120. [Google Scholar] [CrossRef]
- Hozman-Manrique, A.S.; Garcia-Brand, A.J.; Hernández-Carrión, M.; Porras, A. Isolation and Characterization of Cellulose Microfibers from Colombian Cocoa Pod Husk via Chemical Treatment with Pressure Effects. Polymers 2023, 15, 664. [Google Scholar] [CrossRef]
- Orue, A.; Jauregi, A.; Peña-Rodriguez, C.; Labidi, J.; Eceiza, A.; Arbelaiz, A. The Effect of Surface Modifications on Sisal Fiber Properties and Sisal/Poly (Lactic Acid) Interface Adhesion. Compos. Part B Eng. 2015, 73, 132–138. [Google Scholar] [CrossRef]
- Barreto, A.C.H.; Rosa, D.S.; Fechine, P.B.A.; Mazzetto, S.E. Properties of Sisal Fibers Treated by Alkali Solution and Their Application into Cardanol-Based Biocomposites. Compos. Part Appl. Sci. Manuf. 2011, 42, 492–500. [Google Scholar] [CrossRef]
- Abera, G.; Woldeyes, B.; Demash, H.D.; Miyake, G. The Effect of Plasticizers on Thermoplastic Starch Films Developed from the Indigenous Ethiopian Tuber Crop Anchote (Coccinia Abyssinica) Starch. Int. J. Biol. Macromol. 2020, 155, 581–587. [Google Scholar] [CrossRef]
- Dang, K.M.; Yoksan, R. Development of Thermoplastic Starch Blown Film by Incorporating Plasticized Chitosan. Carbohydr. Polym. 2015, 115, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, F.; Wang, L.; Li, J.; Guo, A.; Zhang, C.; Liu, P. Research on Thermoplastic Starch and Different Fiber Reinforced Biomass Composites. RSC Adv. 2015, 5, 49824–49830. [Google Scholar] [CrossRef]
- de Oliveira Begali, D.; Ferreira, L.F.; de Oliveira, A.C.S.; Borges, S.V.; de Sena Neto, A.R.; de Oliveira, C.R.; Yoshida, M.I.; Sarantopoulos, C.I.G.L. Effect of the Incorporation of Lignin Microparticles on the Properties of the Thermoplastic Starch/Pectin Blend Obtained by Extrusion. Int. J. Biol. Macromol. 2021, 180, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Zullo, R.; Iannace, S. The Effects of Different Starch Sources and Plasticizers on Film Blowing of Thermoplastic Starch: Correlation among Process, Elongational Properties and Macromolecular Structure. Carbohydr. Polym. 2009, 77, 376–383. [Google Scholar] [CrossRef]
- Lucic Skoric, M.; Milovanovic, S.; Zizovic, I.; Ortega-Toro, R.; Santagata, G.; Malinconico, M.; Kalagasidis Krusic, M. Supercritical CO2 Impregnation of Thymol in Thermoplastic Starch-Based Blends: Chemico-Physical Properties and Release Kinetics. Polymers 2022, 14, 4360. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of Sugar Palm-Derived Cellulose Reinforcement on the Mechanical and Water Barrier Properties of Sugar Palm Starch Biocomposite Films. BioResources 2016, 11, 4134–4145. [Google Scholar] [CrossRef]
- Syafiq, R.; Sapuan, S.M.; Zuhri, M.R.M. Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm Based Nanocellulose/Starch Biocomposite Films Incorporated with Cinnamon Essential Oil. J. Mater. Res. Technol. 2021, 11, 144–157. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of Plasticizer Type and Concentration on Physical Properties of Biodegradable Films Based on Sugar Palm (Arenga Pinnata) Starch for Food Packaging. J. Food Sci. Technol. 2016, 53, 326–336. [Google Scholar] [CrossRef]
- Tarique, J.; Sapuan, S.M.; Khalina, A. Effect of Glycerol Plasticizer Loading on the Physical, Mechanical, Thermal, and Barrier Properties of Arrowroot (Maranta Arundinacea) Starch Biopolymers. Sci. Rep. 2021, 11, 13900. [Google Scholar] [CrossRef]
- Syafri, E.; Sudirman; Mashadi; Yulianti, E.; Deswita; Asrofi, M.; Abral, H.; Sapuan, S.M.; Ilyas, R.A.; Fudholi, A. Effect of Sonication Time on the Thermal Stability, Moisture Absorption, and Biodegradation of Water Hyacinth (Eichhornia Crassipes) Nanocellulose-Filled Bengkuang (Pachyrhizus Erosus) Starch Biocomposites. J. Mater. Res. Technol. 2019, 8, 6223–6231. [Google Scholar] [CrossRef]
- Lomelí-Ramírez, M.G.; Kestur, S.G.; Manríquez-González, R.; Iwakiri, S.; de Muniz, G.B.; Flores-Sahagun, T.S. Bio-Composites of Cassava Starch-Green Coconut Fiber: Part II—Structure and Properties. Carbohydr. Polym. 2014, 102, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Prachayawarakorn, J.; Chaiwatyothin, S.; Mueangta, S.; Hanchana, A. Effect of Jute and Kapok Fibers on Properties of Thermoplastic Cassava Starch Composites. Mater. Des. 2013, 47, 309–315. [Google Scholar] [CrossRef]
- Ma, H.; Qin, W.; Guo, B.; Li, P. Effect of Plant Tannin and Glycerol on Thermoplastic Starch: Mechanical, Structural, Antimicrobial and Biodegradable Properties. Carbohydr. Polym. 2022, 295, 119869. [Google Scholar] [CrossRef]
- Hafila, K.Z.; Jumaidin, R.; Ilyas, R.A.; Selamat, M.Z.; Yusof, F.A.M. Effect of Palm Wax on the Mechanical, Thermal, and Moisture Absorption Properties of Thermoplastic Cassava Starch Composites. Int. J. Biol. Macromol. 2022, 194, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, K.Z.; Sapuan, S.M.; Zuhri, M.Y.M.; Jumaidin, R. Effect of Plasticizers on Physical, Thermal, and Tensile Properties of Thermoplastic Films Based on Dioscorea Hispida Starch. Int. J. Biol. Macromol. 2021, 185, 219–228. [Google Scholar] [CrossRef]
- Florencia, V.; López, O.V.; García, M.A. Exploitation of By-Products from Cassava and Ahipa Starch Extraction as Filler of Thermoplastic Corn Starch. Compos. Part B Eng. 2020, 182, 107653. [Google Scholar] [CrossRef]
- Fiore, V.; Di Bella, G.; Valenza, A. The Effect of Alkaline Treatment on Mechanical Properties of Kenaf Fibers and Their Epoxy Composites. Compos. Part B Eng. 2015, 68, 14–21. [Google Scholar] [CrossRef]
- Reddy, K.O.; Reddy, K.R.N.; Zhang, J.; Zhang, J.; Varada Rajulu, A. Effect of Alkali Treatment on the Properties of Century Fiber. J. Nat. Fibers 2013, 10, 282–296. [Google Scholar] [CrossRef]
- Vijay, R.; Lenin Singaravelu, D.; Vinod, A.; Sanjay, M.R.; Siengchin, S.; Jawaid, M.; Khan, A.; Parameswaranpillai, J. Characterization of Raw and Alkali Treated New Natural Cellulosic Fibers from Tridax Procumbens. Int. J. Biol. Macromol. 2019, 125, 99–108. [Google Scholar] [CrossRef]
- Castaño, J.; Rodríguez-Llamazares, S.; Contreras, K.; Carrasco, C.; Pozo, C.; Bouza, R.; Franco, C.M.L.; Giraldo, D. Horse Chestnut (Aesculus Hippocastanum L.) Starch: Basic Physico-Chemical Characteristics and Use as Thermoplastic Material. Carbohydr. Polym. 2014, 112, 677–685. [Google Scholar] [CrossRef]
- Huang, M.; Yu, J.; Ma, X. Ethanolamine as a Novel Plasticiser for Thermoplastic Starch. Polym. Degrad. Stab. 2005, 90, 501–507. [Google Scholar] [CrossRef]
- Sujka, M.; Jamroz, J. Ultrasound-Treated Starch: SEM and TEM Imaging, and Functional Behaviour. Food Hydrocoll. 2013, 31, 413–419. [Google Scholar] [CrossRef]
- Mali, S.; Grossmann, M.V.E.; Garcia, M.A.; Martino, M.N.; Zaritzky, N.E. Microstructural Characterization of Yam Starch Films. Carbohydr. Polym. 2002, 50, 379–386. [Google Scholar] [CrossRef]
- Kian, L.K.; Jawaid, M.; Ariffin, H.; Alothman, O.Y. Isolation and Characterization of Microcrystalline Cellulose from Roselle Fibers. Int. J. Biol. Macromol. 2017, 103, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, A.F.; Haafiz, M.K.M.; Hossain, M.d.S.; Hussin, M.H.; Fazita, M.R.N. Influence of Alkaline Hydrogen Peroxide Pre-Hydrolysis on the Isolation of Microcrystalline Cellulose from Oil Palm Fronds. Int. J. Biol. Macromol. 2017, 95, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Tonoli, G.H.D.; Teixeira, E.M.; Corrêa, A.C.; Marconcini, J.M.; Caixeta, L.A.; Pereira-da-Silva, M.A.; Mattoso, L.H.C. Cellulose Micro/Nanofibres from Eucalyptus Kraft Pulp: Preparation and Properties. Carbohydr. Polym. 2012, 89, 80–88. [Google Scholar] [CrossRef]
- Baruah, J.; Deka, R.C.; Kalita, E. Greener Production of Microcrystalline Cellulose (MCC) from Saccharum Spontaneum (Kans Grass): Statistical Optimization. Int. J. Biol. Macromol. 2020, 154, 672–682. [Google Scholar] [CrossRef]
- Bisanda, E.T.N. The Effect of Alkali Treatment on the Adhesion Characteristics of Sisal Fibres. Appl. Compos. Mater. 2000, 7, 331–339. [Google Scholar] [CrossRef]
- Ghanbari, A.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Mashkour, M. Preparation and Characterization of Thermoplastic Starch and Cellulose Nanofibers as Green Nanocomposites: Extrusion Processing. Int. J. Biol. Macromol. 2018, 112, 442–447. [Google Scholar] [CrossRef]
- Giuri, A.; Colella, S.; Listorti, A.; Rizzo, A.; Esposito Corcione, C. Biodegradable Extruded Thermoplastic Maize Starch for Outdoor Applications. J. Therm. Anal. Calorim. 2018, 134, 549–558. [Google Scholar] [CrossRef]
- Qiao, Z.; Lv, S.; Gu, J.; Tan, H.; Shi, J.; Zhang, Y. Influence of Acid Hydrolysis on Properties of Maize Starch Adhesive. Pigment Resin Technol. 2017, 46, 148–155. [Google Scholar] [CrossRef]
- Sun, Q.; Li, G.; Dai, L.; Ji, N.; Xiong, L. Green Preparation and Characterisation of Waxy Maize Starch Nanoparticles through Enzymolysis and Recrystallisation. Food Chem. 2014, 162, 223–228. [Google Scholar] [CrossRef] [PubMed]
- do Amaral, L.J.D.; Dias, F.T.G.; Zorzi, J.E.; Cruz, R.C.D. Obtenção de amidos termoplásticos para a extrusão de pós cerâmicos. Polímeros 2016, 26, 60–67. [Google Scholar] [CrossRef]
- Altayan, M.h.d.M.; Al Darouich, T.; Karabet, F. Thermoplastic Starch from Corn and Wheat: A Comparative Study Based on Amylose Content. Polym. Bull. 2021, 78, 3131–3147. [Google Scholar] [CrossRef]
- Bergo, P.V.A.; Carvalho, R.A.; Sobral, P.J.A.; dos Santos, R.M.C.; da Silva, F.B.R.; Prison, J.M.; Solorza-Feria, J.; Habitante, A.M.Q.B. Physical Properties of Edible Films Based on Cassava Starch as Affected by the Plasticizer Concentration. Packag. Technol. Sci. 2008, 21, 85–89. [Google Scholar] [CrossRef]
- Suppakul, P.; Chalernsook, B.; Ratisuthawat, B.; Prapasitthi, S.; Munchukangwan, N. Empirical Modeling of Moisture Sorption Characteristics and Mechanical and Barrier Properties of Cassava Flour Film and Their Relation to Plasticizing–Antiplasticizing Effects. LWT Food Sci. Technol. 2013, 50, 290–297. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Mohammad Amini, A.; Zahedi, Y. Characterisation of a New Biodegradable Edible Film Based on Sage Seed Gum: Influence of Plasticiser Type and Concentration. Food Hydrocoll. 2015, 43, 290–298. [Google Scholar] [CrossRef]
- Van Khoi, N.; Tung, N.T.; Ha, P.T.T.; Trang, P.T.; Duc, N.T.; Thang, T.V.; Phuong, H.T.; Huong, N.T.; Phuong, N.T.L. Study on Characteristics of Thermoplastic Starch Based on Vietnamese Arrowroot Starch Plasticized by Glycerol. Vietnam J. Chem. 2023, 61, 59–64. [Google Scholar] [CrossRef]
- Esmaeili, M.; Pircheraghi, G.; Bagheri, R. Optimizing the Mechanical and Physical Properties of Thermoplastic Starch via Tuning the Molecular Microstructure through Co-Plasticization by Sorbitol and Glycerol. Polym. Int. 2017, 66, 809–819. [Google Scholar] [CrossRef]
- Shi, R.; Liu, Q.; Ding, T.; Han, Y.; Zhang, L.; Chen, D.; Tian, W. Ageing of Soft Thermoplastic Starch with High Glycerol Content. J. Appl. Polym. Sci. 2007, 103, 574–586. [Google Scholar] [CrossRef]
- Campos, A.; Marconcini, J.M.; Martins-Franchetti, S.M.; Mattoso, L.H.C. The Influence of UV-C Irradiation on the Properties of Thermoplastic Starch and Polycaprolactone Biocomposite with Sisal Bleached Fibers. Polym. Degrad. Stab. 2012, 97, 1948–1955. [Google Scholar] [CrossRef]
- Jumaidin, R.; Khiruddin, M.A.A.; Asyul Sutan Saidi, Z.; Salit, M.S.; Ilyas, R.A. Effect of Cogon Grass Fibre on the Thermal, Mechanical and Biodegradation Properties of Thermoplastic Cassava Starch Biocomposite. Int. J. Biol. Macromol. 2020, 146, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Rendón-Villalobos, R.; Lorenzo-Santiago, M.A.; Olvera-Guerra, R.; Trujillo-Hernández, C.A. Bioplastic Composed of Starch and Micro-Cellulose from Waste Mango: Mechanical Properties and Biodegradation. Polímeros 2022, 32, e2022026. [Google Scholar] [CrossRef]
- de Campos, A.; Teodoro, K.B.R.; Marconcini, J.M.; Mattoso, L.H.C.; Martins-Franchetti, S.M. Efeito do tratamento das fibras nas propriedades do biocompósito de amido termoplástico/policaprolactona/sisal. Polímeros 2011, 21, 217–222. [Google Scholar] [CrossRef]
- Tarique, J.; Sapuan, S.M.; Khalina, A.; Sherwani, S.F.K.; Yusuf, J.; Ilyas, R.A. Recent Developments in Sustainable Arrowroot (Maranta Arundinacea Linn) Starch Biopolymers, Fibres, Biopolymer Composites and Their Potential Industrial Applications: A Review. J. Mater. Res. Technol. 2021, 13, 1191–1219. [Google Scholar] [CrossRef]
- Jumaidin, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Effect of Seaweed on Mechanical, Thermal, and Biodegradation Properties of Thermoplastic Sugar Palm Starch/Agar Composites. Int. J. Biol. Macromol. 2017, 99, 265–273. [Google Scholar] [CrossRef]
- Vaezi, K.; Asadpour, G.; Sharifi, H. Effect of ZnO Nanoparticles on the Mechanical, Barrier and Optical Properties of Thermoplastic Cationic Starch/Montmorillonite Biodegradable Films. Int. J. Biol. Macromol. 2019, 124, 519–529. [Google Scholar] [CrossRef]
Film | Composition |
---|---|
TPS-1 | Starch with 18% glycerol |
TPS-2 | Starch with 28% glycerol |
TPS-3 | Starch with 36% glycerol |
CS-1 | Starch with 18% glycerol + 5% treated fibers |
CS-2 | Starch with 18% glycerol + 10% treated fibers |
CS-3 | Starch with 28% glycerol + 5% treated fibers |
CS-4 | Starch with 28% glycerol + 10% treated fibers |
CS-5 | Starch with 36% glycerol + 5% treated fibers |
CS-6 | Starch with 36% glycerol + 10% treated fibers |
Sample | T5 (°C) | T10 (°C) | T50 (°C) | Tmax(°C) | Residual Mass (%) at 800 °C |
---|---|---|---|---|---|
TPS-1 | 57 | 104 | 309 | 313 | 2.40 |
TPS-2 | 57 | 111 | 307 | 302 | 15.60 |
TPS-3 | 54 | 98 | 305 | 297 | 13.10 |
CS-1 | 69 | 172 | 307 | 307 | 6.43 |
CS-2 | 61 | 102 | 305 | 306 | 3.26 |
CS-3 | 55 | 86 | 300 | 298 | 5.12 |
CS-4 | 67 | 112 | 305 | 307 | 5.55 |
CS-5 | 54 | 87 | 304 | 309 | 5.97 |
CS-6 | 66 | 110 | 301 | 307 | 8.25 |
Sample | σ (MPa) | E (%) | ε (MPa) |
---|---|---|---|
TPS-1 | 3.25 ± 0.45 a | 9.87 ± 4.50 a,b | 93.77 ± 31.24 a |
TPS-2 | 2.50 ± 0.26 b | 22.13 ± 4.24 c | 27.50 ± 4.46 b |
TPS-3 | 1.30 ± 0.24 c | 16.40 ± 2.90 d | 16.97 ± 2.83 b |
CS-1 | 3.70 ± 0.87 a | 4.15 ± 0.55 e | 208.50 ± 29.68 c |
CS-2 | 4.78 ± 0.34 d | 3.12 ± 0.47 e | 267.17 ± 68.02 d |
CS-3 | 2.45 ± 0.57 b | 11.67 ± 4.19 b | 44.02 ± 11.42 b,e |
CS-4 | 2.44 ± 0.13 b | 6.60 ± 1.48 a,e | 74.26 ± 24.08 a,e |
CS-5 | 1.94 ± 0.15 b,e | 9.14 ± 1.10 a,b | 44.54 ± 8.57 b, e |
CS-6 | 1.67 ± 0.33 c,e | 6.90 ± 0.52 a,e | 44.04 ± 17.53 b,e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Vilhena, M.B.; Matos, R.M.; Ramos Junior, G.S.d.S.; Viegas, B.M.; da Silva Junior, C.A.B.; Macedo, E.N.; Paula, M.V.d.S.; da Silva Souza, J.A.; Candido, V.S.; de Sousa Cunha, E.J. Influence of Glycerol and SISAL Microfiber Contents on the Thermal and Tensile Properties of Thermoplastic Starch Composites. Polymers 2023, 15, 4141. https://doi.org/10.3390/polym15204141
de Vilhena MB, Matos RM, Ramos Junior GSdS, Viegas BM, da Silva Junior CAB, Macedo EN, Paula MVdS, da Silva Souza JA, Candido VS, de Sousa Cunha EJ. Influence of Glycerol and SISAL Microfiber Contents on the Thermal and Tensile Properties of Thermoplastic Starch Composites. Polymers. 2023; 15(20):4141. https://doi.org/10.3390/polym15204141
Chicago/Turabian Stylede Vilhena, Mailson Batista, Rochelle Moraes Matos, Gilberto Sérgio da Silva Ramos Junior, Bruno Marques Viegas, Carlos Alberto Brito da Silva Junior, Emanuel Negrão Macedo, Marcos Vinícius da Silva Paula, José Antônio da Silva Souza, Verônica Scarpini Candido, and Edinaldo José de Sousa Cunha. 2023. "Influence of Glycerol and SISAL Microfiber Contents on the Thermal and Tensile Properties of Thermoplastic Starch Composites" Polymers 15, no. 20: 4141. https://doi.org/10.3390/polym15204141
APA Stylede Vilhena, M. B., Matos, R. M., Ramos Junior, G. S. d. S., Viegas, B. M., da Silva Junior, C. A. B., Macedo, E. N., Paula, M. V. d. S., da Silva Souza, J. A., Candido, V. S., & de Sousa Cunha, E. J. (2023). Influence of Glycerol and SISAL Microfiber Contents on the Thermal and Tensile Properties of Thermoplastic Starch Composites. Polymers, 15(20), 4141. https://doi.org/10.3390/polym15204141