Chemistry of Dimer Acid Production from Fatty Acids and the Structure–Property Relationships of Polyamides Made from These Dimer Acids
Abstract
1. Introduction
2. Fatty Acid Dimer Synthesis and Properties
2.1. Clay Structure and Property
2.2. Dimerization Products and Structures
2.3. Dimerization Mechanism
3. Dimer-Based Polyamides
Polyamide Composition and Properties
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, Y.; Quirino, R.L.; Larock, R.C. Bio-based thermosetting polymers from vegetable oils. J. Renew. Mater. 2013, 1, 3–15. [Google Scholar] [CrossRef]
- Tan, S.G.; Chow, W.S. Biobased epoxidized vegetable oils and its greener epoxy blends: A review. Polym. Plast. Technol. Eng. 2010, 49, 1581–1590. [Google Scholar] [CrossRef]
- Pizzi, A. Bioadhesives for wood and fibres: A critical review. Rev. Adhes. Adhes. 2013, 1, 88–113. [Google Scholar] [CrossRef]
- He, Z.; Wan, H. Bio-based wood adhesive research: Advances and outlooks. In Bio-Based Wood Adhesives: Preparation, Characterization, and Testing; He, Z., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 340–355. ISBN 13: 9780367782283. [Google Scholar]
- Cardoso, S.; Nunes, L.; Faria, P. Bio-based adhesives for wood-based panels—A review. Cienc. Tecnol. Mater. 2015, 27, 143–151. [Google Scholar] [CrossRef]
- Paraskar, P.M.; Major, I.; Ladole, M.R.; Doke, R.B.; Patil, N.R.; Kulkarni, R.D. Dimer fatty acid—A renewable building block for high-performance polymeric materials. Ind. Crops Prod. 2023, 200, 116817. [Google Scholar] [CrossRef]
- Cowan, J.C. Twenty years of research in oils at Northern Regional Research Laboratory. J. Am. Oil Chem. Soc. 1961, 38, 12A–18A. [Google Scholar] [CrossRef]
- Johnson, R.W. Dimerization and polymerization. In Fatty Acids; Pryde, E.H., Ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1979; pp. 343–352. ISBN 0935315047. [Google Scholar]
- Laudise, M.A. Chemistry and technology of polyamide resins from dimerized fatty acids. Appl. Poly Sci. 1985, 40, 963–984. [Google Scholar] [CrossRef]
- Leonard, E.C. The Dimer Acids: The Chemical and Physical Properties, Reactions, and Applications of Polymerized Fatty Acids; Humko Sheffield Chemical: Memphis, TN, USA, 1975. [Google Scholar]
- Ennor, K.S.; Logan, R.L. Other uses of fatty acids. In Naval Stores: Production, Chemistry, Utilization; Zinkel, D.F., Russell, J., Eds.; Pulp Chemicals Association: New York, NY, USA, 1989; pp. 790–799. ISBN 9780685309032. [Google Scholar]
- Johnson, R.W. Miscellaneous Industrial Uses. In Fatty Acids; Pryde, E.H., Ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1979; pp. 608–615. ISBN 0935315047. [Google Scholar]
- Pryde, E.H. Fatty Acids; American Oil Chemists’ Society: Champaign, IL, USA, 1979; ISBN 0935315047. [Google Scholar]
- Frihart, C.R. Adhesive precursors from tree-derived naval stores. In Biobased Adhesives: Sources, Characteristics and Applications; Dunky, M., Mittal, K.L., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2023; pp. 499–516. [Google Scholar] [CrossRef]
- Frihart, C.R. Epoxy adhesives from natural materials. In Biobased Adhesives: Sources, Characteristics and Applications; Dunky, M., Mittal, K.L., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2023; pp. 367–393. [Google Scholar] [CrossRef]
- Mattson, R.H. Fatty acids in surface coatings. In Naval Stores: Production, Chemistry, Utilization; Zinkel, D.F., Russell, J., Eds.; Pulp Chemicals Association: New York, NY, USA, 1989; pp. 741–779. ISBN 9780685309032. [Google Scholar]
- Frankel, E.N. Autooxidation. In Fatty Acids; Pryde, E.H., Ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1979; pp. 353–378. ISBN 0935315047. [Google Scholar]
- Bradley, T.F.; Richardson, D. Drying oils and resins. Ind. Eng. Chem. 1940, 32, 802–809. [Google Scholar] [CrossRef]
- Goebel, C.G. Polymerization of unsaturated fatty acids. J. Am. Oil Chem. Soc. 1947, 24, 65–68. [Google Scholar] [CrossRef]
- Barrett, F.O.; Goebel, C.G.; Peters, R.M. Process of Dimerizing Monounsaturated Fatty Acids. U.S. Patent 2,793,219, 21 May 1957. [Google Scholar]
- Barrett, F.O.; Goebel, C.G.; Peters, R.M. Method of Making Polymeric Acids. U.S. Patent 2,793,220, 21 May 1957. [Google Scholar]
- Leonard, E.C. Polymerization-dimer acids. J. Am. Oil Chem. Soc. 1979, 56, 782A–785A. [Google Scholar] [CrossRef]
- Den Otter, M.J.A.M. The Clay-Catalysed Dimerisation of Oleic Acid. Ph.D. Thesis, Technische Hogeschool Eindhoven, Eindhoven, The Netherlands, January 1968. [Google Scholar] [CrossRef]
- Johnson, R.W.; Valdespino, J.M.; Gordon, R.L.; Miller, G.E.; Kight, R.W. Polyamides from fatty acids. In Encyclopedia of Polymer Science and Technology; Wiley Inc.: New York, NY, USA, 1985; pp. 476–489. ISBN 9780471895404. [Google Scholar]
- do Nascimento, G.M. Clay and Clay Minerals; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Kumari, N.; Mohan, C. Basics of clay minerals and their characteristic Properties. In Clay and Clay Minerals; Nascimento, G.M.D., Ed.; IntechOpen: Rijeka, Croatia, 2021; Available online: https://www.intechopen.com/chapters/76780 (accessed on 20 December 2022).
- Shapley, P. Clay Minerals. Clays and Soil. 2010. Available online: http://butane.chem.uiuc.edu/pshapley/environmental/l28/2.html#:~:text=%EE%80%80Structure%EE%80%81%20All%20%EE%80%80clay%EE%80%81%20minerals%20consist%20of%20particles%20that,located%20between%20layers%20and%20are%20solvated%20by%20wate (accessed on 15 January 2023).
- Moronta, A. Catalytic and adsorption properties of modified clay surfaces. In Interface Science and Technology; Wypych, F., Satyanarayana, K.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 321–344. [Google Scholar] [CrossRef]
- Natu, V.M. What is Intercalation and Exfoliation of Clay.doc. 2022. Available online: http://www.coatingsys.com/pdf/_What%20is%20intercalation%20and%20exfoliation%20of%20clay.pdf#:~:text=Exfoliation%3A%20This%20is%20a%20delaminating%20process%20wherein%20the,polymer%20matrix.%20Thus%20exfoliated%20clays%20represent%20true%20nanomaterials (accessed on 28 February 2023).
- Kakuta, T.; Baba, Y.; Yamagishi, T.-A.; Ogoshi, T. Supramolecular exfoliation of layer silicate clay by novel cationic pillar [5]arene intercalants. Sci. Rep. 2021, 11, 10637. [Google Scholar] [CrossRef]
- Zhou, C.; Tong, D.; Yu, W. Smectite nanomaterials: Preparation, properties, and functional applications. In Nanomaterials from Clay Minerals; Wang, A., Wang, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 335–364. [Google Scholar] [CrossRef]
- Dana, K.; Sarkar, M. Organophilic nature of nanoclay. In Clay Nanoparticles; Cavallaro, G., Fakhrullin, R., Pasbakhsh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 117–138. [Google Scholar] [CrossRef]
- Adams, J.M.; Clapp, T.V.; Clement, D.E. Catalysis by montmorillonites. Clay Miner. 2018, 18, 411–421. [Google Scholar] [CrossRef]
- Den Otter, I.M.J.A.M. The dimerization of oleic acid with a montmorillonite catalyst I: Important process parameters; some main reactions. Fette Seifen Anstrichm. 1970, 72, 667–673. [Google Scholar] [CrossRef]
- Hayes, K.S. Polymerization of Fatty Acids. U.S. Patent 4,776,983, 11 October 1989. [Google Scholar]
- Maghrebi, R.; Buffi, M.; Bondioli, P.; Chiaramonti, D. Isomerization of long-chain fatty acids and long-chain hydrocarbons: A review. Renew. Sustain. Energy Rev. 2021, 149, 111264. [Google Scholar] [CrossRef]
- Ngo, H.L.; Dunn, R.O.; Sharma, B.; Foglia, T.A. Synthesis and physical properties of isostearic acids and their esters. Eur. J. Lipid Sci. Technol. 2011, 113, 180–188. [Google Scholar] [CrossRef]
- McMahon, D.H.; Crowell, E.P. Characterization of products from clay catalyzed polymerization of tall oil fatty acids. J. Am. Oil Chem. Soc. 1974, 51, 522–527. [Google Scholar] [CrossRef]
- Logan, R.L. Tall oil fatty acids. J. Am. Oil Chem. Soc. 1979, 56, 777A–779A. [Google Scholar] [CrossRef]
- Fury, L.A.; Mecklenborg, K.T.; Berman, L.U.; Loeb, M.L. Commercial applications of dimer acids and their derivatives. In The Dimer Acids: The Chemical and Physical Properties, Reactions, and Applications of Polymerized Fatty Acids; Leonard, E.C., Ed.; Humko Sheffield Chemical: Memphis, TN, USA, 1975; pp. 49–97. [Google Scholar]
- Erhan, S.M.; Isbell, T.A. Estolide production with modified clay catalysts and process conditions. J. Am. Oil Chem. Soc. 1997, 74, 249–254. [Google Scholar] [CrossRef]
- den Otter, M.J.A.M. The Dimerization of Oleic Acid with a Montmorillonite Catalyst II: GLC Analysis of the Monomer; the Structure of the Dimer; a Reaction Model. Fette Seifen Anstrichm. 1970, 72, 875–883. [Google Scholar] [CrossRef]
- Kohan, M.I. Nylon Plastics Handbook; Hanser/Gardner Publications: Cincinnati, OH, USA, 1995; p. 631. [Google Scholar]
- Frihart, C.R.; Pavlin, M.S. Ink Compositions for Ink Jet Printing. U.S. Patent 4,830,671, 11 October 1989. [Google Scholar]
- Frihart, C.R.; Pavlin, M.S. Resinous Binders for Use in Ink Compositions for Ink Jet Printing. U.S. Patent 5,194,638, 16 March 1993. [Google Scholar]
- Berger, V.; Heydel, J.; Williams, V.A.G.; Frihart, C.R.; Gordon, R.L.; MacQueen, R.C.; Pavlin, M.S. Gels Including Bioactive Components. U.S. Patent 6,242,509, 5 June 2001. [Google Scholar]
- Berger, V.; Heydel, J.; Williams, V.A.G.; Frihart, C.R.; Gordon, R.L.; MacQueen, R.C.; Pavlin, M.S. Ester-Terminated Polyamide Gels. U.S. Patent 6,111,055, 29 August 2000. [Google Scholar]
- Den Otter, M.J.A.M. The Dimerization of Oleic Acid with a Montmorillonite Catalyst III: Test of the Reaction Model. Fette Seifen Anstrichm. 1970, 72, 1056–1066. [Google Scholar] [CrossRef]
- Anonymous. Diels-Alder Reaction. 2020. Available online: https://chem.libretexts.org/Courses/University_of_California_Davis/UCD_Chem_231A%3A_Methods_of_Organic_Synthesis/Text/Diels-Alder_Reaction (accessed on 20 January 2022).
- BYJU’S. Diels Alder Reaction. 2022. Available online: https://byjus.com/chemistry/diels-alder-reaction-mechanism/ (accessed on 4 January 2022).
- Gould, E.S. Mechanism and Structure in Organic Chemistry; Holt, Rinehart, and Winston: New York, NY, USA, 1959; pp. 93–122. [Google Scholar]
- Roberts, J.D.; Caserio, M.C. Basic Principles of Organic Chemistry; WA Benjamin Inc: New York, NY, USA, 1965; pp. 196–197. [Google Scholar]
- Heidekum, A.; Harmer, M.A.; Hoelderich, W.F. Addition of Carboxylic Acids to Cyclic Olefins Catalyzed by Strong Acidic Ion-Exchange Resins. J. Catal. 1999, 181, 217–222. [Google Scholar] [CrossRef]
- Agabekov, V.E.; Denisov, E.T.; Mitskevich, N.I. Mechanism of the decarboxylation of aliphatic dibasic acids, coupled with liquid-phase oxidation. Bull. Acad. Sci. USSR Div. Chem Sci. 1968, 17, 2133–2138. [Google Scholar] [CrossRef]
- Duncan, D.P. Chemistry of tall oil fatty acids. In Naval Stores: Production, Chemistry, Utilization; Zinkel, D.F., Russell, J., Eds.; Pulp Chemicals Association: New York, NY, USA, 1989; pp. 346–439. [Google Scholar]
- Fury, L.A. Chemical reactions of dimer acids. In The Dimer Acids: The Chemical and Physical Properties, Reactions, and Applications of Polymerized Fatty Acids; Leonard, E.C., Ed.; Humko Sheffield Chemical: Memphis, TN, USA, 1975; pp. 27–48. [Google Scholar]
- Peerman, D.W. Polyamide resins. In Encyclopedia of Polymer Science and Technology; Wiley: New York, NY, USA, 1969; pp. 597–615. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, H.; Jia, L.; Ning, J.; Tang, R.; Qiao, J.; Zhang, Z. Polyamides derived from piperazine and used for hot-melt adhesives: Synthesis and properties. Int. J. Adhes. Adhes. 2002, 22, 75–79. [Google Scholar] [CrossRef]
- Johnson, R.W. The chemistry of dibasic and polybasic fatty acids. J. Am. Oil Chem. Soc. 1984, 61, 241–246. [Google Scholar] [CrossRef]
- Casteroil.in. Sebacic Acid. 2018. Available online: www.castoroil.in/castor/castor_seed/castor_oil/sebacic_acid/sebacic_acid.html (accessed on 2 February 2023).
- Köckritz, A.; Martin, A. Synthesis of azelaic acid from vegetable oil-based feedstocks. Eur. J. Lipid Sci. Technol. 2011, 113, 83–91. [Google Scholar] [CrossRef]
- Wroczynski, R.J. Polyamide from Polymeric Fatty Acid and Long Chain Dicarboxylic Acid. U.S. Patent 4,882,414, 21 November 1989. [Google Scholar]
- Floyd, D.E. Polyamide adhesives. In Handbook of Adhesives; Skeist, I., Ed.; Reinhold Publishing Corporation: New York, NY, USA, 1963; pp. 425–433. ISBN 978-1-4612-8019-4. [Google Scholar]
- Kadam, P.G.; Mhaske, S.T. Effect of Piperazine Concentration on the Properties of Lower Purity Dimer Acid-Synthesized Polyamide Hot-Melt Adhesive. J. Adhes. Sci. Technol. 2012, 26, 1267–1279. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Sreedhar, B.; Raju, K.V.S.N. Thermal stability of chemically crosslinked moisture-cured polyurethane coatings. J. Appl. Polym. Sci. 2005, 95, 1509–1518. [Google Scholar] [CrossRef]
- Peerman, D.W.; Vertnick, L.R. Polyamide Composition. U.S. Patent 3,377,303, 9 April 1968. [Google Scholar]
- Frihart, C.R. Specific adhesion model for bonding hot-melt polyamides to vinyl. Int. J. Adhes. Adhes. 2004, 24, 415–422. [Google Scholar] [CrossRef]
- Frihart, C.R. Curable Adhesive Compositions Containing Polyamide Resins. U.S. Patent 5,612,448, 18 March 1997. [Google Scholar]
- Kadam, P.G.; Mhaske, S.T. Synthesis and properties of polyamide derived from piperazine and lower purity dimer acid as hot melt adhesive. Int. J. Adhes. Adhes. 2011, 31, 735–742. [Google Scholar] [CrossRef]
- Rasmussenn, J.K. Impact Resistant, Thermoplastic Polyamides. U.S. Patent 4,218,351, 19 August 1980. [Google Scholar]
- Veazey, R.L. Poly(ester-amide) Hot-Melt Adhesives. U.S. Patent 4,485,233, 27 February 1984. [Google Scholar]
- Veazey, R.L.; Frihart, C.R. Poly(ester-amide) Hot Melt Adhesives. U.S. Patent 4,515,939, 5 May 1985. [Google Scholar]
Structure/FA Feed | Linoleic | TOFA | Oleic/Eladic |
---|---|---|---|
Linear (non-cyclic) | 5 | 15 a | 40 a |
Monocyclic- aromatic | 25 | 20 | 5 |
Monocyclic- nonaromatic | 30 | 50 a | 50 a |
Polycyclic | 40 | 15 a | 5 a |
Polymer | Monomers | Melting Point, °C | Softening Point, °C |
---|---|---|---|
Nylon 6 | Caprolactam | 210–220 | |
Nylon 6,6 | Adipic acid, Heamethylene diamine | 245–265 | |
Nylon 6,12 | Dodecanoic acid, Heamethylene diamine | 215–220 | |
Polyamide | Dimer acid, Ethylene diamine | 100 | |
Polyamide | Dimer acid, Heamethylene diamine | 53–59 | |
Polyamide | Dimer acid, Dimer diamine | Liquid |
Dimer Acid, % of Total Acids | Sebacic Acid, % of Total Acids | Polyamide Softening Point, °C | Tensile Strength, MPa | Elongation, % |
---|---|---|---|---|
100 | 0 | 100 | 1600 | 500 |
95 | 5 | 135 | 1750 | 400 |
90 | 10 | 165 | 2100 | 350 |
85 | 15 | 200 | 3300 | 300 |
Polyamide Adhesive Prepared from | ||||
---|---|---|---|---|
Physical Properties | 1,2-Diaminopropane Example 1 | Ethylenediamine Example 2 | 1,3-Diaminopropane Example 3 | 2-Methyl=1,5—Pentanediamine Example 4 |
Softening Point, °C | 111 | 158 | 94 | 98 |
Viscosity at 190 °C, Pa-s | 9.8 | 8.5 | 9.5 | 5.4 |
Tensile strength, MPa | 2.48 | 3.61 | 0.52 | 0.09 |
Elongation, % | 556 | 402 | >2000 | >800 |
Modulus, Pa | 2335 | 12,690 | * | * |
Open time | 50 s | 10 s | >24 h | >24 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frihart, C.R. Chemistry of Dimer Acid Production from Fatty Acids and the Structure–Property Relationships of Polyamides Made from These Dimer Acids. Polymers 2023, 15, 3345. https://doi.org/10.3390/polym15163345
Frihart CR. Chemistry of Dimer Acid Production from Fatty Acids and the Structure–Property Relationships of Polyamides Made from These Dimer Acids. Polymers. 2023; 15(16):3345. https://doi.org/10.3390/polym15163345
Chicago/Turabian StyleFrihart, Charles R. 2023. "Chemistry of Dimer Acid Production from Fatty Acids and the Structure–Property Relationships of Polyamides Made from These Dimer Acids" Polymers 15, no. 16: 3345. https://doi.org/10.3390/polym15163345
APA StyleFrihart, C. R. (2023). Chemistry of Dimer Acid Production from Fatty Acids and the Structure–Property Relationships of Polyamides Made from These Dimer Acids. Polymers, 15(16), 3345. https://doi.org/10.3390/polym15163345