New Approaches to the Synthesis and Stabilization of Polymer Microspheres with a Narrow Size Distribution
Abstract
:1. Introduction
2. Role of the Microemulsification Process in Particle Formation in Emulsion Polymerization
3. Formation of Polymeric Microspheres with Larger Diameters above 0.2 µm
4. Synthesis of Polymeric Microspheres Stabilized with Water Insoluble Surfactants
5. Functionalized Organosilicon Surfactants, Their Colloidal–Chemical and Rheological Properties
6. Polymerization of Styrene in the Presence of PDMS
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gritskova, I.A.; Sivaev, A.A.; Gusev, S.A.; Levachev, S.M.; Lobanova, N.A.; Andreeva, A.V.; Chvalun, S.N. Polymer microspheres for replacement of biological carriers in test systems operating on the principle of latex agglutination reaction. Russ. Chem. Bull. 2019, 68, 2075–2082. [Google Scholar] [CrossRef]
- Chern, C.S. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci. 2006, 31, 443–486. [Google Scholar] [CrossRef]
- Harkins, W.D. A general theory of the reaction loci in emulsion polymerization. J. Chem. Phys. 1945, 13, 381–382. [Google Scholar] [CrossRef]
- Harkins, W.D. A general theory of the reaction loci in emulsion polymerization. II. J. Chem. Phys. 1946, 14, 47–48. [Google Scholar] [CrossRef]
- Harkins, W.D. A general theory of the mechanism of emulsion polymerization. J. Chem. Phys. 1947, 69, 1428–1447. [Google Scholar] [CrossRef]
- Smith, W.V.; Ewart, R.J. Kinetics of emulsion polymerization. J. Chem. Phys. 1948, 16, 592–601. [Google Scholar] [CrossRef]
- Tauer, K. Latex Particles. In Colloids and Colloid Assemblies; Caruso, F., Ed.; Wiley-VCH: Weinheim, Germany, 2003; pp. 1–51. [Google Scholar]
- Antonietti, M.; Tauer, K. 90 years of polymer latexes and heterophase polymerization: More vital than ever. Macromol. Chem. Phys. 2003, 204, 207–219. [Google Scholar] [CrossRef]
- Pavlyuchenko, V.N.; Ivanchev, S.S. Emulsion polymerization of non-polar monomers (development of ideas about kinetics and topochemistry). Russ. Chem. Rev. 1981, 4, 715–745. [Google Scholar]
- Hansen, F.K.; Ofstad, E.B.; Ugelstad, J. Emulsification of styrene with mixtures of anionic emulsifier and long chain fatty alkools. Emulsion polymerization with initiation in monomer droplets. In Theory and Practic of Emulsion Technology; Smith, A.L., Ed.; Academic Press: London, UK, 1976; pp. 13–25. [Google Scholar]
- Smith, W.V. Chain initiation in Styrene Emulsion Polymerization. J. Am. Chem. Soc. 1949, 71, 4077–4082. [Google Scholar] [CrossRef]
- Medvedev, S.S. Kinetics and Mechanism of Formation and Transformation of Macromolecules; Nauka: Moscow, Russia, 1968; p. 324. (In Russian) [Google Scholar]
- Medvedev, S.S.; Homikovsky, P.M.; Sheinker, A.P.; Zabolotskaya, E.V.; Berezhnoi, G.D. Laws of emulsion polymerization. Probl. Phys. Chem. 1958, 1, 5–17. [Google Scholar]
- Keusch, P.J.; Prince, J.; Williams, D.J. The growth of polystyrene latex particles. J. Macromol. Sci. Chem. 1973, 7, 623–646. [Google Scholar] [CrossRef]
- Ugelstad, J.; Hansen, F.K. Kinetics and mechanism of emulsion polymerization. Rubber Chem. Technol. 1976, 49, 536–609. [Google Scholar] [CrossRef]
- Friis, N.; Hamilec, A.E. Kinetics of styrene emulsion polymerization. J. Polym. Sci. Polym. Chem. Ed. 1973, 11, 3321–3525. [Google Scholar] [CrossRef]
- Roe, C.P. Surface chemistry aspects of emulsion polymerization. Ind. Eng. Chem. 1968, 60, 20–33. [Google Scholar] [CrossRef]
- Fitch, R.M.; Prenosil, M.B.; Sprick, K.J. The mechanism of particle formation in polymer hydrosols. I. Kinetics of Aqueous Polymerization of Methyl Methacrylate. J. Polym. Sci. 1969, 27, 95–118. [Google Scholar] [CrossRef]
- Fitch, R.M.; Tsai, C.H. Particle formation in polymer colloids. III. Prediction of the number of particles by a homogeneous nucleation theory. In Polymer Colloids; Fitch, R.M., Ed.; Springer: Boston, MA, USA, 1971; pp. 73–102. [Google Scholar]
- Hansen, F.K.; Ugelstad, J. Particle nucleation in emulsion polymerization. IV. Nucleation in monomer droplets. J. Polym. Sci. A-1 1979, 17, 3069–3078. [Google Scholar] [CrossRef]
- El-Aasser, M.S.; Miller, C.M. Preparation of latexes using microemulsions. In Polymeric Dispersions: Principles and Applications; Asua, J.M., Ed.; Springer: Dordrecht, The Netherlands, 1997; pp. 109–126. [Google Scholar]
- Gritskova, I.A.; Sedakova, L.I.; Muradyan, D.S.; Pravednikov, A.N. On the topochemistry of emulsion polymerization. DAN USSR 1978, 238, 607–610. [Google Scholar]
- Kaminsky, V.A.; Gritskova, I.A. Interphase phenomena and formation of particles at emulsion polymerization. J. Chem. Phys. 1996, 70, 1516–1520. [Google Scholar]
- Izmailova, V.N.; Gritskova, I.A.; Levachev, S.M.; Bulatova, T.V.; Kapustina, A.A.; Nuss, P.V.; Yampol’skaya, G.P. Two-dimensional rheological characteristics of poly(dimethylsiloxane) at the interface of two immiscible liquids. Polym. Sci. Ser. A 2001, 43, 1251–1255. [Google Scholar]
- Pismen, L.M.; Kuchanov, C.I. Quantitative theory of emulsion polymerization. Polym. Sci. Ser. A 1971, 13, 1055–1065. [Google Scholar]
- Oganesyan, A.A. Radical Polymerization and Phase Formation in Heterogeneous Monomer/Water Systems. Ph.D. Thesis, Moscow Institute of Fine Chemical Technology, Moscow, Russia, 1986. (In Russian). [Google Scholar]
- Hansen, F.K.; Ofstad, E.B.; Ugelstad, G. Theory and Practice of Emulsion Polymerization; Smith, A.L., Ed.; Academic Press: New York, NY, USA, 1976; pp. 13–21. [Google Scholar]
- Eliseeva, V.I. Polymeric Dispersions; Chemistry: Moscow, Russia, 1980; p. 296. [Google Scholar]
- Goodwin, J.W.; Ottewill, R.H.; Pelton, R.; Vianello, G.; Yates, D.E. Control of particle size in the formation of polymer lattices. Brit. Polym. J. 1978, 10, 173–180. [Google Scholar] [CrossRef]
- Karlsson, O.J.; Stubbs, J.M.; Karlsson, L.E.; Sundberg, D.C. Estimating diffusion coefficients for small molecules in polymers and polymer solutions. Polymer 2001, 42, 4915–4923. [Google Scholar] [CrossRef]
- Hicke, H.F.; Rehark, J. On the formation of water/oil microemulsion. Helv. Chim. Acta 1976, 59, 2883–2891. [Google Scholar]
- Taubman, A.B.; Nikitina, S.A. Structural and mechanical properties of surface layers of emulsifiers and mechanism of stabilization of concentrated emulsions. Colloidn. Zh. 1962, 24, 633–635. [Google Scholar]
- Gritskova, I.A.; Prokopov, N.I.; Levachev, S.M.; Tsarkova, M.S.; Gusev, S.A. The Latest Achievements in the Field of Heterophase Polymerization; IFT: Moscow, Russia, 2018; p. 348. [Google Scholar]
- Zeziulina, O.A. Suspension Polymerization of Polymethylmethacrylate in the Presence of Polymer Stabilizers. Ph.D. Thesis, Moscow Institute of Fine Chemical Technology, Moscow, Russia, 2021. (In Russian). [Google Scholar]
- Kholodova, A.A.; Beloded, L.N.; Klujin, E.S. Suspension copolymerization of butyl methacrylate and methacrylic acid in the presence of polymeric dispersants of different chemical composition. Plast. Massy 2009, 11, 38–40. [Google Scholar]
- Kireev, V.V.; Sharshakova, Y.V.; Klochkov, A.N. Dynamics of particle size distribution formation in suspension styrene polymerization. Polym. Sci. B 2006, 48, 874–877. [Google Scholar]
- Andor, I.A.; Shamrakova, A.E. Mechanism of particle formation in granular polymerization. Acta Phys. Chem. Univ. Szeged 1972, 19, 305–313. [Google Scholar]
- Cordovi, C.M.; Lucas, A.D.; Rodriguez, J.F.; Tejeda, J. Influence of stirring speed on the suspension copolymerization of styrene with methyl methacrylate. J. Macromol. Sci.-Pure Appl. Chem. 1997, 34, 1339–1351. [Google Scholar] [CrossRef]
- Olayo, R.; García, E.; García-Corichi, B.; Sánchez-Vázquez, L.; Alvarez, J. Poly(vinyl alcohol) as a Stabilizer in the Suspension Polymerization of Styrene: The Effect of the Molecular Weight. J. Appl. Polym. Sci. 1998, 67, 71–77. [Google Scholar] [CrossRef]
- Castellanos, J.R.; Mendizabal, E.; Puig, J.E. A Quick method for choosing a protecting colloid for suspension polymerization. J. Appl. Polym. Sci. Appl. Polym. Symp. 1991, 49, 91–101. [Google Scholar] [CrossRef]
- Mendizabal, E.; Castellanos-Ortega, J.R.; Puig, J.E. A method for selecting a polyvinyl alcohol as stabilizer in suspension polymerization. Colloids Surf. 1992, 63, 209–217. [Google Scholar] [CrossRef]
- Shvareva, G.N.; Berlin, A.A.; Milova, E.A. Suspension polymerization of methyl methacrylate. Plast. Massy 1975, 11, 10–11. [Google Scholar]
- Vivaldo-Lima, E.; Wood, P.E.; Hamieiec, A.E.; Penlidis, A. An Updated Review on Suspension Polymerization. Ind. Eng. Chem. Res. 1997, 36, 939–965. [Google Scholar] [CrossRef]
- Jahanzad, F.; Sajjadi, S.; Brooks, B.W. Comparative study of particle size in suspension polymerization and corresponding monomer-water dispersion. Ind. Eng. Chem. Res. 2005, 44, 4112–4119. [Google Scholar] [CrossRef]
- Gritskova, I.A.; Papkov, V.S.; Krasheninnikova, I.G.; Evtushenko, A.M. Heterophase polymerization of styrene in the presence of organosilicon compounds of various natures. Polym. Sci. Ser. A 2007, 49, 389–396. [Google Scholar] [CrossRef]
- Chirikova, O.V. Synthesis of Functional Polymeric Suspensions in the Presence of Organosilicon Surfactants. Ph.D. Thesis, Moscow Institute of Fine Chemical Technology, Moscow, Russia, 1994. (In Russian). [Google Scholar]
- Shchukin, E.D.; Pertsov, A.V.; Amelina, E.A.; Zelenev, A.S. Colloid and Surface Chemistry; Elsevier: Amsterdam, The Netherlands, 2001; 747p. [Google Scholar]
- Voronkov, M.G.; Mileshkevich, V.P.; Yuzhelevsky, Y.A. Siloxane Bonding; Nauka: Novosibirsk, Russia, 1976; p. 413. [Google Scholar]
- Chirikova, O.V.; Gritskova, I.A.; Schegolikhina, O.I.; Zhdanov, A.A. Unusual effect of stabilization of polymer suspensions in the presence of carboxyl-containing polyvinylsiloxanes. Dokl. Akad. Nauk. 1994, 334, 57–61. [Google Scholar]
- Srivihay, M.; Chandrasekar, K.; Baskar, G. Physico-chemical properties of siloxane surfactants in water in their surface energy characteristics. Polymer 2007, 48, 1261–1268. [Google Scholar]
- Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. Surfactants and Polymers in Aqueous Solution, 2nd ed.; John Wiley & Sons: Chichester, UK, 2002; p. 568. [Google Scholar]
- Mehta, S.C.; Somasundaran, P.; Maldarelli, C.; Kulkarni, R. Effects of Functional Groups on Surface Pressure-Area Isotherms of Hydrophilic Silicone Polymers. Langmuir 2006, 22, 9566–9571. [Google Scholar] [CrossRef]
- Liu, J. Silicon Dispersions; CRC Press: Boca Raton, FL, USA, 2017; p. 432. [Google Scholar]
- Kim, C.; Gurau, M.C.; Cremer, P.S.; Yu, H. Chain conformation of poly(dimethyl siloxane) at the air/water interface by sum frequency generation. Langmuir 2008, 24, 10155–10160. [Google Scholar] [CrossRef]
- Banks, W.H. Surface films of poly-di-methyl siloxanes on organic liquid substrate. Nature. 1954, 174, 356–366. [Google Scholar] [CrossRef]
- Ellison, A.H.; Zisman, W.A. Surface Activity at the Organic Liquid/Air Interface. J. Phys. Chem. 1956, 60, 416–421. [Google Scholar]
- Jarvis, N.L. Monomolecular films of polydimethylsiloxanes on organic liquids. Colloid. Interface Sci. 1969, 29, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Knobler, C.M.; Desai, R.C. Phase Transitions in Monolayers. Annu. Rev. Phys. Chem. 1992, 43, 207–236. [Google Scholar] [CrossRef]
- Damaschun, V.G. Röntgenographische Untersuchung der Struktur von Silikongummi. Kolloid-Z. Z. Polym. 1962, 180, 65–67. [Google Scholar] [CrossRef]
- Flory, P.J. Statistical Mechanics of Chain Molecules; Wiley: New York, NY, USA, 1969; p. 432. [Google Scholar]
- Schilling, F.C.; Gomez, M.A.; Tonelli, A.E. Solid-state NMR observations of the crystalline conformation of poly(dimethylsiloxane). Macromolecules 1991, 24, 6552–6553. [Google Scholar] [CrossRef]
- Belousov, S.I.; Sautter, E.; Godovsky, Y.K.; Makarova, N.N.; Rekhold, W. Langmuir polysiloxane films. Linear polysiloxanes. Polym. Sci. Ser. A 1996, 38, 1532–1537. [Google Scholar]
- Tsvankin, Y.D.; Papkov, V.S.; Zhukov, V.P.; Godovsky, Y.K.; Svistunov, V.S.; Zhdanov, A.A. Structure and phase transitions in poly(diethylsiloxane). J. Polym. Sci. Polym. Chem. 1985, 23, 1043–1056. [Google Scholar] [CrossRef]
- Ogarev, V.A. Monomolecular films of poly(dimethyl siloxane) at liquid surfaces. Colloid J. 1997, 59, 676–685. [Google Scholar]
Surfactant | Solubility Ratio of Surfactants, Kv/Km | σ1,2, mN/m | Γmax × 106, mol/m2 | G × 103, mN∙m2/mol | S0, nm2 |
---|---|---|---|---|---|
PDMS | 3.0 × 10−5 | 28 | 10.7 | 33.4 | 1.55 |
PVA | - | 25 | 14.4 | 29.1 | 1.29 |
SDS | - | 4 | 4.5 | 14.5 | 0.40 |
Rheological Parameters | PDMS Concentration, % (vol.) | ||||
---|---|---|---|---|---|
0.2 | 0.6 | 0.8 | 1.0 | 2.0 | |
Prs × , mN/m | 4.5 | 10.6 | 13.3 | 23.9 | 18.7 |
Pss × , mN/m | 0.8 | 1.8 | 6.1 | 6.6 | 6.6 |
Viscosity , mN · C/M | 0.8 | 1.9 | 6.6 | 7.1 | 7.1 |
Modulus of elasticity , mN/m | 2.5 | 4.0 | 5.2 | 9.8 | 9.8 |
Name | [Surfactant], % | ||
---|---|---|---|
40 kDa PVA, 2% content of acetate groups | 0.01 | 1.2 | 0.6 |
0.2 | 2.0 | 0.8 | |
0.5 | 3.0 | 0.95 | |
SDS | 2 | - | 1.12 |
4 | 1.6 | 1.5 | |
8 | - | 10 | |
PDMS | 1 | 9.8 | 23.9 |
Initiator Concentration | Average Particle Diameter, | Molecular Weight, | |||
---|---|---|---|---|---|
wt % | 102 mol/L | ||||
0.1 | 0.33 | 0.40 | 1.02 | 1.3 | 7.0 |
0.5 | 1.68 | 0.41 | 1.01 | 3.8 | 3.7 |
1.0 | 3.36 | 0.43 | 1.01 | 4.3 | 2.4 |
2.0 | 6.70 | 0.43 | 1.01 | 5.5 | 2.1 |
4.0 | 13.40 | 0.44 | 1.01 | 11.2 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gritskova, I.A.; Prokopov, N.I.; Ezhova, A.A.; Chalykh, A.E.; Gusev, S.A.; Levachev, S.M.; Zubov, V.P.; Gomzyak, V.I.; Skopintsev, I.V.; Stuzhuk, A.N.; et al. New Approaches to the Synthesis and Stabilization of Polymer Microspheres with a Narrow Size Distribution. Polymers 2023, 15, 2464. https://doi.org/10.3390/polym15112464
Gritskova IA, Prokopov NI, Ezhova AA, Chalykh AE, Gusev SA, Levachev SM, Zubov VP, Gomzyak VI, Skopintsev IV, Stuzhuk AN, et al. New Approaches to the Synthesis and Stabilization of Polymer Microspheres with a Narrow Size Distribution. Polymers. 2023; 15(11):2464. https://doi.org/10.3390/polym15112464
Chicago/Turabian StyleGritskova, Inessa A., Nikolay I. Prokopov, Anna A. Ezhova, Anatoly E. Chalykh, Sergey A. Gusev, Sergey M. Levachev, Vitaly P. Zubov, Vitaly I. Gomzyak, Ivan V. Skopintsev, Alexander N. Stuzhuk, and et al. 2023. "New Approaches to the Synthesis and Stabilization of Polymer Microspheres with a Narrow Size Distribution" Polymers 15, no. 11: 2464. https://doi.org/10.3390/polym15112464
APA StyleGritskova, I. A., Prokopov, N. I., Ezhova, A. A., Chalykh, A. E., Gusev, S. A., Levachev, S. M., Zubov, V. P., Gomzyak, V. I., Skopintsev, I. V., Stuzhuk, A. N., Kovtun, I. D., Shulgin, A. M., Ivashkevich, D. S., Romanenko, G. A., Lakhtin, V. G., & Chvalun, S. N. (2023). New Approaches to the Synthesis and Stabilization of Polymer Microspheres with a Narrow Size Distribution. Polymers, 15(11), 2464. https://doi.org/10.3390/polym15112464