Heat Transfer in Cassava Starch Biopolymers: Effect of the Addition of Borax
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Mali, S.; Grossmann, M.V.E.; Garcia, M.A.; Martino, M.N.; Zaritzky, N.E. Microstructural Characterization of yam starch films. Carbohydr. Polym. 2002, 50, 379–386. [Google Scholar] [CrossRef]
- Vaidya, U.R.; Bhattacharya, M.; Zhang, D. Effect of processing conditions on the dynamic mechanical properties of starch and anhydride functional polymer blends. Polymer 1995, 36, 1179–1188. [Google Scholar] [CrossRef]
- Pillai, G.E.L.C.K.S. Biodegradable polymers—A review on recent trends and emerging perspectives. 2011, 19, 637–676. [CrossRef]
- Taylor, P.; Wang, X.; Yang, K.; Wang, Y.; Wang, X.; Yang, K.; Wang, Y. Properties of starch blends with biodegradable polymers. J. Mol. Sci. Part C 2007, 43, 37–41. [Google Scholar] [CrossRef]
- Anderson, J.M.; Shive, M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 2012, 28, 5–24. [Google Scholar] [CrossRef]
- Leja, K.; Lewandowicz, G. Polymer biodegradation and biodegradable Polymers—A review. Pol. J. Environ. Stud. 2010, 19, 255–266. [Google Scholar]
- Ma, X.; Yu, J. The plastcizers containing amide groups for thermoplastic starch. Carbohydr. Polym. 2004, 57, 197–203. [Google Scholar] [CrossRef]
- Villada, H.S.; Acosta, H.A. Investigación de almidones termoplásticos, precursores de productos biodegradables research on thermoplastic starches, biodegradable products precursors. Inf. Tecnol. 2008, 19, 3–14. [Google Scholar] [CrossRef][Green Version]
- Zhai, M.; Yoshii, F.; Kume, T. Radiation modification of starch-based plastic sheets. Carbohydr. Polym. 2003, 52, 311–317. [Google Scholar] [CrossRef]
- Miura, K.; Kimura, N.; Suzuki, H.; Miyashita, Y. Thermal and viscoelastic properties of alginate/poly (vinyl alcohol) blends cross-linked with calcium tetraborate. Carbohydr. Polym. 1999, 39, 139–144. [Google Scholar] [CrossRef]
- De Graaf, R.A.; Karman, A.P.; Nobel, A. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing research paper. Starch-Stärke 2003, 55, 80–86. [Google Scholar] [CrossRef]
- Thitipraphunkul, K.; Uttapap, D.; Piyachomkwan, K.; Takeda, Y. A comparative study of edible canna (Canna edulis) starch from different cultivars. part i. chemical composition and physicochemical properties. Carbohydr. Polym. 2003, 53, 317–324. [Google Scholar] [CrossRef]
- Parra, D.F.; Tadini, C.C.; Ponce, P.; Lugao, A.B. Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydr. Polym. 2004, 58, 475–481. [Google Scholar] [CrossRef]
- Petersson, M.; Stading, M. Water Vapour Permeability and mechanical properties of mixed starch-monoglyceride films and effect of film forming conditions. Food Hydrocoll. 2005, 19, 123–132. [Google Scholar] [CrossRef]
- Nashed, G.; Rutgers, R.P.G.; Sopade, P.A. The plasticisation effect of glycerol and water on the gelatinisation of wheat starch. Starch-Stärke 2003, 55, 131–137. [Google Scholar] [CrossRef]
- Famá, L.; Rojas, A.M.; Goyanes, S.; Gerschenson, L. Mechanical properties of tapioca-starch edible films containing sorbates. LWT Food Sci. Technol. 2005, 38, 631–639. [Google Scholar] [CrossRef]
- Huang, C.; Qian, X.; Yang, R. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Rep. 2018, 132, 1–22. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, S.; Zeng, H.; Liu, J.; Li, B.; Xu, Y.; Zhao, X.; Chen, G. Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels. Mater. Horiz. 2020, 7, 2936–2943. [Google Scholar] [CrossRef]
- Hubbard, T.A.; Brown, A.J.; Bell, I.A.W.; Cockroft, S.L. The limit of intramolecular H-bonding. J. Am. Chem. Soc. 2016, 138, 15114–15117. [Google Scholar] [CrossRef] [PubMed]
- Głowacki, E.D.; Irimia-Vladu, M.; Bauer, S.; Sariciftci, N.S. Hydrogen-bonds in molecular solids-from biological systems to organic electronics. J. Mater. Chem. B 2013, 1, 3742–3753. [Google Scholar] [CrossRef]
- Mu, L.; He, J.; Li, Y.; Ji, T.; Mehra, N.; Shi, Y.; Zhu, J. Molecular origin of efficient phonon transfer in modulated polymer blends: Effect of hydrogen bonding on polymer coil size and assembled microstructure. J. Phys. Chem. C 2017, 121, 14204–14212. [Google Scholar] [CrossRef]
- Liu, J.; Yang, R. Length-dependent thermal conductivity of single extended polymer chains. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 104307. [Google Scholar] [CrossRef]
- Gurau, G.; Wang, H.; Qiao, Y.; Lu, X.; Zhang, S.; Rogers, R.D. Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure Appl. Chem. 2012, 84, 745–754. [Google Scholar] [CrossRef]
- Sreedhar, B.; Sairam, M.; Chattopadhyay, D.K.; Rathnam, P.A.S.; Mohan Rao, D.V. Thermal, mechanical, and surface characterization of starch-poly(vinyl alcohol) blends and borax-crosslinked films. J. Appl. Polym. Sci. 2005, 96, 1313–1322. [Google Scholar] [CrossRef]
- Sun, S.; Liu, P.; Ji, N.; Hou, H.; Dong, H. Effects of various cross-linking agents on the physicochemical properties of starch/pha composite films produced by extrusion blowing. Food Hydrocoll. 2018, 77, 964–975. [Google Scholar] [CrossRef]
- Tanetrungroj, Y.; Prachayawarakorn, J. Effect of dual modification on properties of biodegradable crosslinked-oxidized starch and oxidized-crosslinked starch films. Int. J. Biol. Macromol. 2018, 120, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, C.A.; Campanella, G.; Türe, H.; Olsson, R.T.; Farris, S. Microfibrillated cellulose and borax as mechanical, O2-barrier, and surface-modulating agents of pullulan biocomposite coatings on BOPP. Carbohydr. Polym. 2016, 143, 179–187. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the re-evaluation of boric acid (E 284) and sodiumtetraborate (Borax) (E 285) as food additives. EFSA J. 2013, 11, 3407. [Google Scholar]
- Aeridou, E.; Diáz Diáz, D.; Alemán, C.; Pérez-Madrigal, M.M. Advanced functional hydrogel biomaterials based on dynamic b-o bonds and polysaccharide building blocks. Biomacromolecules 2020, 21, 3984–3996. [Google Scholar] [CrossRef]
- Chiou, H.; Martin, M.; Fitzgerald, M. Effect of purification methods on rice starch structure. Starch/Staerke 2002, 54, 415–420. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Özeren, H.D.; Guivier, M.; Olsson, R.T.; Nilsson, F.; Hedenqvist, M.S. Ranking plasticizers for polymers with atomistic simulations: Pvt, mechanical properties, and the role of hydrogen bonding in thermoplastic starch. ACS Appl. Polym. Mater. 2020, 2, 2016–2026. [Google Scholar] [CrossRef]
- Yang, J.; Tang, K.; Qin, G.; Chen, Y.; Peng, L.; Wan, X.; Xiao, H.; Xia, Q. Hydrogen bonding energy determined by molecular dynamics simulation and correlation to properties of thermoplastic starch films. Carbohydr. Polym. 2017, 166, 256–263. [Google Scholar] [CrossRef]
- Yun, Y.H.; Na, Y.H.; Yoon, S. Do mechanical properties with the functional group of additives for starch/Pva blend film. J. Polym. Environ. 2006, 14, 71–78. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; da Silva, M.A.; dos Santos, L.O.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef]
- Zambrano-Arjona, M.A.; Medina-Esquivel, R.; Alvarado-Gil, J.J. Photothermal radiometry monitoring of light curing in resins. J. Phys. D Appl. Phys. 2007, 40, 6098–6104. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 2008, 89, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Dome, K.; Podgorbunskikh, E.; Bychkov, A.; Lomovsky, O. Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers 2020, 12, 641. [Google Scholar] [CrossRef]
- Ratnayake, W.S.; Jackson, D.S. A New insight into the gelatinization process of native starches. Carbohydr. Polym. 2007, 67, 511–529. [Google Scholar] [CrossRef]
- Mehra, N.; Kashfipour, M.A.; Zhu, J. Filler free technology for enhanced thermally conductive optically transparent polymeric materials using low thermally conductive organic linkers. Appl. Mater. Today 2018, 13, 207–216. [Google Scholar] [CrossRef]
- Hoover, R. Composition, molecular structure, and physicochemical properties of tuber and root starches: A review. Carbohydr. Polym. 2001, 45, 253–267. [Google Scholar] [CrossRef]
- Kikugawa, G.; Desai, T.G.; Keblinski, P.; Ohara, T. Effect of crosslink formation on heat conduction in amorphous polymers. J. Appl. Phys. 2013, 114, 034302. [Google Scholar] [CrossRef]
- Rashidi, V.; Coyle, E.J.; Sebeck, K.; Kie, J.; Pipe, K.P. Thermal conductance in cross-linked polymers: Effects of non- bonding interactions. J. Phys. Chem. B 2017, 121, 4600–4609. [Google Scholar] [CrossRef] [PubMed]
- Manna, U.; Patil, S. Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan. J. Phys. Chem. B 2009, 113, 9137–9142. [Google Scholar] [CrossRef] [PubMed]
- Gujral, S.S. UV-visible spectral anlysis of boric acid in different solvents: A case study. Int. J. Pharm. Sci. Res. 2015, 6, 830–834. [Google Scholar] [CrossRef]
- Rezvan, G.; Pircheraghi, G.; Bagheri, R. Curcumin incorporated pva-borax dual delivery hydrogels as potential wound dressing materials—Correlation between viscoelastic properties and curcumin release rate. J. Appl. Polym. Sci. 2018, 135, 46734. [Google Scholar] [CrossRef]
- Azeem, B.; KuShaari, K.Z.; Man, Z.; Irfan, S.A. Parametric study of tumbling fluidized bed to evaluate nitrogen release characteristics of biopolymer-coated controlled release urea. Chem. Eng. Commun. 2018, 205, 1397–1414. [Google Scholar] [CrossRef]
- Mutungi, C.; Passauer, L.; Onyango, C.; Jaros, D.; Rohm, H. Debranched cassava starch crystallinity determination by raman spectroscopy: Correlation of features in raman spectra with x-ray diffraction and 13C CP/MAS NMR spectroscopy. Carbohydr. Polym. 2012, 87, 598–606. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Abral, H.; Ishak, M.R.; Zainudin, E.S.; Atikah, M.S.N.; Mohd Nurazzi, N.; Atiqah, A.; Ansari, M.N.M.; et al. Effect of sugar palm nanofibrillated celluloseconcentrations on morphological, mechanical andphysical properties of biodegradable films basedon agro-waste sugar palm (Arenga pinnata(Wurmb.) Merr) starch. J. Mater. Res. Technol. 2019, 8, 4819–4830. [Google Scholar] [CrossRef]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of irradiated starches by using FT-raman and FTIR spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Geng, S.; Shah, F.U.; Liu, P.; Antzutkin, O.N.; Oksman, K. Plasticizing and crosslinking effects of borate additives on the structure and properties of poly(vinyl acetate). RSC Adv. 2017, 7, 7483–7491. [Google Scholar] [CrossRef]
- Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–74. [Google Scholar] [CrossRef]
Sample | α (×10−7 m2/s) | Cp (J/g·K) | k (W/m·K) | Tg (°C) |
---|---|---|---|---|
CS | 1.36 | 2.22 | 0.31 | 33 |
0.35Bx-CS | 1.56 | 2.36 | 0.37 | 38 |
0.75Bx-CS | 2.06 | 2.15 | 0.44 | 55 |
1.00Bx-CS | 2.48 | 2.74 | 0.68 | 83 |
1.40Bx-CS | 3.55 | 2.31 | 0.82 | 88 |
1.75Bx-CS | 3.10 | 2.20 | 0.68 | 139 |
2.00 Bx-CS | 2.90 | 2.10 | 0.61 | 145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco-Bacca, A.P.; Cervantes-Alvarez, F.; Macías, J.D.; Castro-Betancur, J.A.; Pérez-Blanco, R.J.; Giraldo Osorio, O.H.; Arias Duque, N.P.; Rodríguez-Gattorno, G.; Alvarado-Gil, J.J. Heat Transfer in Cassava Starch Biopolymers: Effect of the Addition of Borax. Polymers 2021, 13, 4106. https://doi.org/10.3390/polym13234106
Franco-Bacca AP, Cervantes-Alvarez F, Macías JD, Castro-Betancur JA, Pérez-Blanco RJ, Giraldo Osorio OH, Arias Duque NP, Rodríguez-Gattorno G, Alvarado-Gil JJ. Heat Transfer in Cassava Starch Biopolymers: Effect of the Addition of Borax. Polymers. 2021; 13(23):4106. https://doi.org/10.3390/polym13234106
Chicago/Turabian StyleFranco-Bacca, Adriana Paola, Fernando Cervantes-Alvarez, Juan Daniel Macías, Joan Alexis Castro-Betancur, Reynell Junior Pérez-Blanco, Oscar Hernán Giraldo Osorio, Nayda Patricia Arias Duque, Geonel Rodríguez-Gattorno, and Juan José Alvarado-Gil. 2021. "Heat Transfer in Cassava Starch Biopolymers: Effect of the Addition of Borax" Polymers 13, no. 23: 4106. https://doi.org/10.3390/polym13234106
APA StyleFranco-Bacca, A. P., Cervantes-Alvarez, F., Macías, J. D., Castro-Betancur, J. A., Pérez-Blanco, R. J., Giraldo Osorio, O. H., Arias Duque, N. P., Rodríguez-Gattorno, G., & Alvarado-Gil, J. J. (2021). Heat Transfer in Cassava Starch Biopolymers: Effect of the Addition of Borax. Polymers, 13(23), 4106. https://doi.org/10.3390/polym13234106