Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Absorptance, IPCE, IQE, and PCE
3.2. Exciton Dynamics of Solution and Pristine Film Samples
3.3. Exciton Dynamics of P:I Blend Systems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, L.; Li, S.; Lau, T.K.; Cui, Y.; Lu, X.; Shi, M.; Li, C.Z.; Li, H.; Hou, J.; Chen, H. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 2020, 13, 635–645. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef]
- Song, X.; Gasparini, N.; Nahid, M.M.; Paleti, S.H.; Wang, J.L.; Ade, H.; Baran, D. Dual sensitizer and processing-aid behavior of donor enables efficient ternary organic solar cells. Joule 2019, 3, 846–857. [Google Scholar] [CrossRef]
- Lu, Q.; Qiu, M.; Zhao, M.; Li, Z.; Li, Y. Modification of NFA-conjugated Bridges with symmetric structures for High-efficiency Non-fullerene PSCs. Polymers 2019, 11, 958. [Google Scholar] [CrossRef]
- Gao, K.; Kan, Y.; Chen, X.; Liu, F.; Kan, B.; Nian, L.; Wan, X.; Chen, Y.; Peng, X.; Russell, T.P.; et al. Low-bandgap porphyrins for highly efficient organic solar cells: Materials, morphology, and application. Adv. Mater. 2020, 32, 1906129. [Google Scholar] [CrossRef]
- Park, H.; An, J.; Song, J.; Lee, M.; Ahn, H.; Jahnel, M.; Im, C. Thickness-dependent internal quantum efficiency of narrow band-gap polymer-based solar cells. Sol. Energy Mater. Sol. Cells 2015, 143, 242–249. [Google Scholar] [CrossRef]
- Yi, H.; Im, C.; An, J.; Lee, S.; Park, H. Acceptor blending ratio dependence of bulk heterojunction organic photovoltaic devices. J. Korean Phys. Soc. 2014, 64, 910–916. [Google Scholar] [CrossRef]
- Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739. [Google Scholar] [CrossRef] [PubMed]
- Bin, H.; Gao, L.; Zhang, Z.G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; et al. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 2016, 7, 13651. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 2017, 139, 7148–7151. [Google Scholar] [CrossRef] [PubMed]
- This Plot Is Courtesy of the National Renewable Energy Laboratory, Golden, CO. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 April 2021).
- Karki, A.; Gillett, A.J.; Friend, R.H.; Nguyen, T.Q. The path to 20% power conversion efficiencies in nonfullerene acceptor organic solar cells. Adv. Energy Mater. 2021, 11, 2003441. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, J.; Hou, X.; Labanti, C.; Yan, J.; Mazzolini, E.; Parhar, A.; Nelson, J.; Kim, J.S.; Li, Z. Recent Progress and Challenges toward Highly Stable Nonfullerene Acceptor-Based Organic Solar Cells. Adv. Energy Mater. 2021, 11, 2003002. [Google Scholar] [CrossRef]
- Xiao, L.; He, B.; Hu, Q.; Maserati, L.; Zhao, Y.; Yang, B.; Kolaczkowski, M.A.; Anderson, C.L.; Borys, N.J.; Klivansky, L.M.; et al. Multiple roles of a non-fullerene acceptor contribute synergistically for high-efficiency ternary organic photovoltaics. Joule 2018, 2, 2154–2166. [Google Scholar] [CrossRef]
- Hwang, H.; Sin, D.H.; Park, C.; Cho, K. Ternary Organic Solar cells Based on a Wide-Bandgap polymer with enhanced power conversion Efficiencies. Sci. Rep. 2019, 9, 12081. [Google Scholar] [CrossRef]
- Huang, W.; Cheng, P.; Yang, Y.; Li, G.; Yang, Y. High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components. Adv. Mater. 2018, 30, 1705706. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, G.; Liu, J.; Yao, H.; Zhang, J.; Ma, T.; Li, Z.; Yan, H. An All-Solution Processed Recombination Layer with Mild Post-Treatment Enabling Efficient Homo-Tandem Non-fullerene Organic Solar Cells. Adv. Mater. 2017, 29, 1604231. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Guo, Q.; Feng, S.; Bi, Z.; Xue, W.; Yang, J.; Song, J.; Li, C.; Xu, X.; Tang, Z.; et al. Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nat. Commun. 2019, 10, 3038. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, L.; Gautam, B.; Bin, H.J.; Lin, J.D.; Wu, F.P.; Zhang, Z.; Jiang, Z.Q.; Zhang, Z.G.; Gundogdu, K.; et al. A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ. Sci. 2017, 10, 1610–1620. [Google Scholar] [CrossRef]
- Zarrabi, N.; Stoltzfus, D.M.; Burn, P.L.; Shaw, P.E. Charge generation in non-fullerene donor–acceptor blends for organic solar cells. J. Phys. Chem. C 2017, 121, 18412–18422. [Google Scholar] [CrossRef]
- Nakano, K.; Chen, Y.; Xiao, B.; Han, W.; Huang, J.; Yoshida, H.; Zhou, E.; Tajima, K. Anatomy of the energetic driving force for charge generation in organic solar cells. Nat. Commun. 2019, 10, 2520. [Google Scholar] [CrossRef]
- Camargo, F.V.A.; Gasparini, N.; Nagahara, T.; Lüer, L.; Cerullo, G.; Brabec, C. Instantaneous charge separation in nonfullerene acceptor bulk-heterojunction of highly efficient solar cells. EPJ Web Conf. 2019, 205, 05010. [Google Scholar]
- Tamai, Y.; Fan, Y.; Kim, V.O.; Ziabrev, K.; Rao, A.; Barlow, S.; Marder, S.R.; Friend, R.H.; Menke, S.M. Ultrafast long-range charge separation in nonfullerene organic solar cells. ACS Nano 2017, 11, 12473–12481. [Google Scholar] [CrossRef]
- Firdaus, Y.; Le Corre, V.M.; Khan, J.I.; Kan, Z.; Laquai, F.; Beaujuge, P.M.; Anthopoulos, T.D. Key Parameters Requirements for Non-Fullerene-Based Organic Solar Cells with Power Conversion Efficiency > 20%. Adv. Sci. 2019, 6, 1802028. [Google Scholar] [CrossRef]
- Krückemeier, L.; Kaienburg, P.; Flohre, J.; Bittkau, K.; Zonno, I.; Krogmeier, B.; Kirchartz, T. Developing design criteria for organic solar cells using well-absorbing non-fullerene acceptors. Commun. Phys. 2018, 1, 27. [Google Scholar] [CrossRef]
- Cheng, P.; Li, G.; Zhan, X.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142. [Google Scholar] [CrossRef]
- Ye, L.; Weng, K.; Xu, J.; Du, X.; Chandrabose, S.; Chen, K.; Zhou, J.; Han, G.; Tan, S.; Xie, Z.; et al. Unraveling the influence of non-fullerene acceptor molecular packing on photovoltaic performance of organic solar cells. Nat. Commun. 2020, 11, 6005. [Google Scholar] [CrossRef]
- Li, D.; Zhang, X.; Liu, D.; Wang, T. Aggregation of non-fullerene acceptors in organic solar cells. J. Mater. Chem. A 2020, 8, 15607–15619. [Google Scholar] [CrossRef]
- Gueymard, C.A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- Im, C.; Lupton, J.M.; Schouwink, P.; Heun, S.; Becker, H.; Bässler, H. Fluorescence dynamics of phenyl-substituted polyphenylenevinylene–trinitrofluorenone blend systems. J. Chem. Phys. 2002, 117, 1395–1402. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006. [Google Scholar]
- Mollay, B.; Lemmer, U.; Kersting, R.; Mahrt, R.F.; Kurz, H.; Kauffmann, H.F.; Bässler, H. Dynamics of singlet excitations in conjugated polymers: Poly (phenylenevinylene) and poly (phenylphenylenevinylene). Phys. Rev. B 1994, 50, 10769. [Google Scholar] [CrossRef]
- Köntges, W.; Perkhun, P.; Kammerer, J.; Alkarsifi, R.; Würfel, U.; Margeat, O.; Videlot-Ackermann, C.; Simon, J.J.; Schröder, R.R.; Ackermann, J.; et al. Visualizing morphological principles for efficient photocurrent generation in organic non-fullerene acceptor blends. Energy Environ. Sci. 2020, 13, 1259–1268. [Google Scholar] [CrossRef]
- Cha, H.; Fish, G.; Luke, J.; Alraddadi, A.; Lee, H.H.; Zhang, W.; Dong, Y.; Limbu, S.; Wadsworth, A.; Maria, I.P.; et al. Suppression of recombination losses in polymer: Nonfullerene acceptor organic solar cells due to aggregation dependence of acceptor electron affinity. Adv. Energy Mater. 2019, 9, 1901254. [Google Scholar] [CrossRef]
- Köhler, A.; Bässler, H. Triplet states in organic semiconductors. Mater. Sci. Eng. 2009, 66, 71–109. [Google Scholar] [CrossRef]
- Liu, Y.; MacKenzie, R.C.; Xu, B.; Gao, Y.; Gimeno-Fabra, M.; Grant, D.; van Loosdrecht, P.H.; Tian, W. Organic semiconductors with a charge carrier life time of over 2 hours at room temperature. J. Mater. Chem. C 2015, 3, 12260–12266. [Google Scholar] [CrossRef]
- Shoaee, S.; Stolterfoht, M.; Neher, D. The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells. Adv. Energy Mater. 2018, 8, 1703355. [Google Scholar] [CrossRef]
- Song, J.; Lee, Y.; Jin, B.; An, J.; Park, H.; Park, H.; Lee, M.; Im, C. Connecting charge transfer kinetics to device parameters of a narrow-bandgap polymer-based solar cell. Phys. Chem. Chem. Phys. 2016, 18, 26550–26561. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, F.; Prasad, S.K.K.; Chen, J.-D.; Cai, W.; Zhang, Q.; Chen, K.; Wu, Y.; Ma, W.; Gao, F.; et al. Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with >12% efficiency. Adv. Mater. 2018, 30, 1706363. [Google Scholar] [CrossRef]
PCE [%] | VOC [V] | JSC [mA/cm2] | FF [%] | |
---|---|---|---|---|
P:I blend | 11.5 | 0.85 | 20.1 | 67 |
P pristine | 0.19 | 0.69 | 0.32 | 83 |
I pristine | 0.02 | 0.17 | 0.26 | 36 |
τ0 | τp1 and τp2 | τb1 and τb2 | |
---|---|---|---|
[ps] | solutions | pristine films | blend films |
PE(I) | 392 | 4/450 | 30/850 |
PE(P) | 650 | 7/45 | -/- |
PLQY [%] | I | P | P:I |
---|---|---|---|
Solution | 6.8 | 11.0 | - |
Film | 6.1 | 0.9 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, C.; Kang, S.-W.; Choi, J.-Y.; An, J. Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems. Polymers 2021, 13, 1770. https://doi.org/10.3390/polym13111770
Im C, Kang S-W, Choi J-Y, An J. Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems. Polymers. 2021; 13(11):1770. https://doi.org/10.3390/polym13111770
Chicago/Turabian StyleIm, Chan, Sang-Woong Kang, Jeong-Yoon Choi, and Jongdeok An. 2021. "Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems" Polymers 13, no. 11: 1770. https://doi.org/10.3390/polym13111770
APA StyleIm, C., Kang, S.-W., Choi, J.-Y., & An, J. (2021). Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems. Polymers, 13(11), 1770. https://doi.org/10.3390/polym13111770