Process Induced Skin-Core Morphology in Injection Molded Polyamide 66
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Processing
2.3. Sample Preparation
2.4. Polarized-Light Optical Microscopy (POM) and Transmission Electron Microscopy (TEM)
2.5. X-ray Scattering
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Sun, X.; Li, H.; Yan, S. Orientation-induced crystallization of isotactic polypropylene. Polymer 2013, 54, 4404–4421. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; White, J.L. Comparison of structure development in injection molding of isotactic and syndiotactic polypropylenes. Polym. Eng. Sci. 2002, 42, 1642–1656. [Google Scholar] [CrossRef]
- Katti, S.S.; Schultz, J.M. The microstructure of injection-molded semicrystalline polymers: A review. Polym. Eng. Sci. 1982, 22, 1001–1017. [Google Scholar] [CrossRef]
- Schmidt, G.F.; Stuart, H.A. Gitterstrukturen mit räumlichen Wasserstoffbrückensystemen und Gitterumwandlungen bei Polyamiden. Z. Z. Naturforsch. 1958, 13, 222–225. [Google Scholar] [CrossRef]
- Cavallo, D.; Gardella, L.; Alfonso, G.C.; Portale, G.; Balzano, L.; Androsch, R. Effect of cooling rate on the crystal/mesophase polymorphism of polyamide 6. Colloid Polym. Sci. 2011, 289, 1073–1079. [Google Scholar] [CrossRef]
- Gohn, A.M.; Rhoades, A.M.; Wonderling, N.; Tighe, T.; Androsch, R. The effect of supercooling of the melt on the semicrystalline morphology of PA 66. Thermochim. Acta 2017, 655, 313–318. [Google Scholar] [CrossRef]
- Kolesov, I.; Mileva, D.; Androsch, R.; Schick, C. Structure formation of polyamide 6 from the glassy state by fast scanning chip calorimetry. Polymer 2011, 52, 5156–5165. [Google Scholar] [CrossRef]
- Mileva, D.; Androsch, R.; Zhuravlev, E.; Schick, C. Morphology of mesophase and crystals of polyamide 6 prepared in a fast scanning chip calorimeter. Polymer 2012, 53, 3994–4001. [Google Scholar] [CrossRef]
- Van Drongelen, M.; Meijer-Vissers, T.; Cavallo, D.; Portale, G.; Poel, G.V.; Androsch, R. Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter. Acta 2013, 563, 33–37. [Google Scholar] [CrossRef]
- Mollova, A.; Androsch, R.; Mileva, D.; Schick, C.; Benhamida, A. Effect of supercooling on crystallization of polyamide 11. Macromolecules 2013, 46, 828–835. [Google Scholar] [CrossRef]
- Rhoades, A.M.; Schick, C.; Androsch, R. Supercooling-controlled heterogeneous and homogenous crystal nucleation of polyamide 11 and its effect onto the crystal/mesophase polymorphism. Polymer 2016, 106, 29–34. [Google Scholar] [CrossRef]
- Rhoades, A.M.; Williams, J.L.; Androsch, R. Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling. Acta 2015, 603, 103–109. [Google Scholar] [CrossRef]
- Androsch, R.; Schick, C. Crystal nucleation of polymers at high supercooling of the melt. Adv. Polym. Sci. 2015, 276, 257–288. [Google Scholar]
- Toda, A.; Androsch, R.; Schick, C. Insights into polymer crystallization and melting by fast scanning chip calorimetry. Polymer 2016, 91, 239–263. [Google Scholar] [CrossRef]
- Mileva, D.; Androsch, R.; Radusch, H.J. Effect of structure on light transmission in isotactic polypropylene and random propylene-1-butene copolymers. Polym. Bull. 2009, 62, 561–571. [Google Scholar] [CrossRef]
- Schick, C.; Mathot, V.B.F. Fast Scanning Calorimetry; Springer International Publishing: Cham, Switzerland, 2016; pp. 81–104. [Google Scholar]
- Rhoades, A.M.; Wonderling, N.; Gohn, A.M.; Williams, J.; Mileva, D.; Gahleitner, M.; Androsch, R. Effect of cooling rate on crystal polymorphism in beta-nucleated isotactic polypropylene as revealed by a combined WAXS/FSC analysis. Polymer 2016, 90, 67–75. [Google Scholar] [CrossRef]
- Rhoades, A.M.; Schick, C.; Androsch, R. Skin/core crystallinity of injection-molded poly (butylene terephthalate) as revealed by microfocus X-ray diffraction and fast scanning chip calorimetry. Acta 2017, 127, 939–946. [Google Scholar] [CrossRef]
- Russell, D.; Beaumont, P.R. Structure and properties of injection-moulded nylon-6, Part 1: Structure and morphology of nylon-6. J. Mater. Sci. 1980, 15, 197–207. [Google Scholar] [CrossRef]
- Drummer, D.; Meister, S. Correlation of processing, inner structure, and part properties of injection moulded thin-wall parts on example of polyamide 66. Int. J. Polym. Sci. 2014, 3, 1–8. [Google Scholar] [CrossRef]
- Yalcin, B.; Cakmak, M. Superstructural hierarchy developed in coupled high shear/ high thermal gradient conditions of injection molding in nylon 6 nanocomposites. Polymer 2004, 45, 2691–2710. [Google Scholar] [CrossRef]
- Housmans, J.W.; Gahleitner, M.; Peters, G.W.M.; Meijer, H.E.H. Structure–property relations in molded, nucleated isotactic polypropylene. Polymer 2009, 50, 2304–2319. [Google Scholar] [CrossRef]
- Guinier, A. X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies; Dover Publications: New York, NY, USA, 1994; p. 378. [Google Scholar]
- Bragg, W.H.; Bragg, W.L. The reflexion of X-rays by crystals. Proc. R. Soc. Lond. 1913, 88, 428–438. [Google Scholar]
- Janeschitz-Kriegl, H. Polymer Melt Rheology and Flow Birefringence; Springer-Verlag: Berlin/Heidelberg, Germany, 1983; p. 524. [Google Scholar]
- Coyle, D.J.; Blake, J.W.; Macosko, C.W. The kinematics of fountain flow in mold-filling. AIChE J. 1987, 33, 1168–1177. [Google Scholar] [CrossRef]
- Baur, E.; Brinkmann, S.; Osswald, T.; Rudolph, N.; Schmachtenberg, E. Saechtling Kunststoff Taschenbuch; Carl Hanser Verlag: Munich, Germany, 2013; p. 883. [Google Scholar]
- Bunn, C.W.; Garner, E.V. The crystal structures of two polyamides (‘nylons’). Proc. R. Soc. 1947, 189, 39–70. [Google Scholar]
- Dismore, P.F.; Statton, W.O. Chain folding in oriented nylon 66 fibers. J. Polym. Sci. Part C 1966, 13, 133–148. [Google Scholar] [CrossRef]
Sample Position | Reflections | Crystal Perfection Index | Mean Crystallite Sizes (Scherrer) | Crystallinity | Long Period | Crystalline Sublayer (lC = DL × XC) | ||
---|---|---|---|---|---|---|---|---|
d (nm) | CPI (%) | 〈L〉hkl (nm) | XC (%) | DL (nm) | lC (nm) | |||
d100 | d010/110 | 〈L〉002 | 〈L〉100 | |||||
S1 | 0.4335 | 0.3942 | 52.7 | 2.2 | 4.7 | 25.2 | 5.8 | 1.5 |
S2 | 0.4367 | 0.3852 | 70.7 | 2.9 | 6.4 | 36.6 | 7.3 | 2.7 |
S3 | 0.4377 | 0.3813 | 78.3 | 2.9 | 7.4 | 37.8 | 7.9 | 3.0 |
C | 0.4397 | 0.3754 | 90.6 | 4.0 | 9.3 | 37.3 | 9.2 | 3.5 |
Errors ± Δx | ~0.0005 | ~0.0010 | ~1.6 | ~1.2 | ~0.8 | ~1.5 | ~0.1 | ~1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spoerer, Y.; Androsch, R.; Jehnichen, D.; Kuehnert, I. Process Induced Skin-Core Morphology in Injection Molded Polyamide 66. Polymers 2020, 12, 894. https://doi.org/10.3390/polym12040894
Spoerer Y, Androsch R, Jehnichen D, Kuehnert I. Process Induced Skin-Core Morphology in Injection Molded Polyamide 66. Polymers. 2020; 12(4):894. https://doi.org/10.3390/polym12040894
Chicago/Turabian StyleSpoerer, Yvonne, René Androsch, Dieter Jehnichen, and Ines Kuehnert. 2020. "Process Induced Skin-Core Morphology in Injection Molded Polyamide 66" Polymers 12, no. 4: 894. https://doi.org/10.3390/polym12040894
APA StyleSpoerer, Y., Androsch, R., Jehnichen, D., & Kuehnert, I. (2020). Process Induced Skin-Core Morphology in Injection Molded Polyamide 66. Polymers, 12(4), 894. https://doi.org/10.3390/polym12040894