Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of ZIFs
2.2.1. ZIF-7
2.2.2. ZIF-8
2.2.3. ZIF-11
2.3. Preparation of ZIFs/RPUF Composites
2.4. Characterization
3. Results and Discussion
3.1. Characterization of ZIFs
3.2. Mechanical Properties of RPUF Composites
3.3. Thermal Behavior of ZIFs and ZIFs/RPUF
3.4. Combustion Properties of ZIFs/RPUF
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef] [Green Version]
- Salles, F.; Jobic, H.; Maurin, G.; Koza, M.M.; Llewellyn, P.L. Experimental evidence supported by simulations of a very high H2 diffusion in metal organic framework materials. Phys. Rev. Lett. 2008, 100, 245901. [Google Scholar]
- Yanxin, G.; Kai, L.; Ruoxi, K.; Jing, X.; Gang, Y.; Shubo, D. A comparative study of rigid and flexible MOFs for the adsorption of pharmaceuticals: Kinetics, isotherms and mechanisms. J. Hazard. Mater. 2018, 359, 248–257. [Google Scholar]
- Khan, N.A.; Hasan, Z.; Jhung, S.H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. J. Hazard. Mater. 2013, 244, 444–456. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various mof topologies, morphologies, and composites. Chem. Rev. 2012, 43, 933–969. [Google Scholar] [CrossRef]
- Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943. [Google Scholar] [CrossRef]
- Bux, H.; Liang, F.Y.; Li, Y.S.; Cravillon, J.; Wiebcke, M. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2009, 131, 16000–16001. [Google Scholar] [CrossRef] [PubMed]
- Perez–Pellitero, J.; Amrouche, H.; Siperstein, F.R.; Pirngruber, G.; Nieto-Draghi, C. Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: Experiments and simulations. Chem. Eur. J. 2010, 16, 1560–1571. [Google Scholar] [CrossRef] [PubMed]
- Panapitiya, N.P.; Wijenayake, S.N.; Huang, Y.; Bushdiecker, D.; Nguyen, D. Stabilization of immiscible polymer blends using structure directing metal organic frameworks (MOFs). Polymer 2014, 55, 2028–2034. [Google Scholar] [CrossRef]
- Li, W.B.; Meng, Q.; Zhang, C.Y.; Zhang, G.L. Metal-Organic framework/PVDF composite membranes with high H2 permselectivity synthesized by ammoniation. Chem. Eur. J. 2015, 21, 7224–7230. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.J.; Li, S.X.; Zhang, F.; Wang, Y.; Qu, W.J.; Liu, M. Effects of the recycled poly (ethylene terephthalate) fibers on the rigid polyurethane foam. J. Appl. Polym. Sci. 2019, 136, 47758. [Google Scholar] [CrossRef]
- Cheng, J.J.; Qu, W.J.; Sun, S.H. Effects of flame-retardant flax-fiber on enhancing performance of the rigid polyurethane foams. J. Appl. Polym. Sci. 2018, 135, 46436. [Google Scholar] [CrossRef]
- Almeida, M.L.B.; Ayres, E.; Moura, C.C.; Oréfice, R.L. Polyurethane foams containing residues of petroleum industry catalysts as recoverable ph-sensitive sorbents for aqueous pesticides. J. Hazard. Mater. 2018, 346, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kang, W.; Chen, C.; Zhang, X.; Yang, L.; Chen, X. Combustion behaviour and dominant shrinkage mechanism of flexible polyurethane foam in the cone calorimeter test. J. Hazard. Mater. 2019, 365, 395. [Google Scholar] [CrossRef]
- Li, M.E.; Wang, S.X.; Han, L.X.; Yuan, W.J.; Cheng, J.B. Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating, flame-retardant and smoke-suppressant performances. J. Hazard. Mater. 2019, 375, 61–69. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Song, P.; Maluk, C.; Wang, H. Surface-coating engineering for flame retardant flexible polyurethane foams: A critical review. Compos. Part B Eng. 2019, 176, 107185. [Google Scholar] [CrossRef]
- Hou, Y.B.; Hu, W.Z.; Gui, Z.; Hu, Y. A novel Co(II) ebased metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Compos. Sci. Technol. 2017, 152, 231–242. [Google Scholar] [CrossRef]
- Xu, B.L.; Xu, W.Z.; Wang, G.S.; Liu, L.C.; Xu, J. Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin. Polym. Adv. Technol. 2018, 29, 1733–1743. [Google Scholar] [CrossRef]
- Xie, J.; Shi, X.W.; Zhang, M.; Dai, X.; Wang, X.L. Improving the flame retardancy of polypropylene by nano metal-organic frameworks and bioethanol coproduct. Fire Mater. 2019, 43, 373–380. [Google Scholar] [CrossRef]
- Samadi-Maybodi, A.; Ghasemi, S.; Ghaffari-Rad, H. A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine. Sens. Actuators B Chem. 2015, 220, 627–633. [Google Scholar] [CrossRef]
- Hu, Y.; Kazemian, H.; Rohani, S.; Huang, Y.N.; Song, Y. In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem. Commun. 2011, 47, 12694–12696. [Google Scholar] [CrossRef] [PubMed]
- Reif, B.; Paula, C.; Fabisch, F.; Hartmann, M.; Kaspereit, M.; Schwieger, W. Synthesis of ZIF-11–Influence of the synthesis parameters on the phase purity. Microporous Mesoporous Mater. 2019, 275, 102–110. [Google Scholar] [CrossRef]
- He, M.; Yao, J.; Li, L.; Wang, K.; Chen, F. Synthesis of zeolitic imidazolate framework-7 in a water/ethanol mixture and its ethanol-induced reversible phase transition. Chem. Plus Chem. 2013, 78, 1222–1225. [Google Scholar] [CrossRef]
- Sahin, F.; Topuz, B.; Kalipcilar, H. Synthesis of ZIF-7, ZIF-8, ZIF-67, and ZIF-L from recycled mother liquors. Microporous Mesoporous Mater. 2018, 261, 259–267. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Yao, J.; Liu, Q.; Zhong, Z.; Wang, H. Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: Synthesis and formation mechanism of ZIF-11 and ZIF-12. Dalton Trans. 2013, 42, 16608–16613. [Google Scholar] [CrossRef] [PubMed]
- Elangovan, D.; Yuzay, I.E.; Emselke, S.; Auras, R. Poly(L-lactic acid) metal organic framework composites: Optical, thermal and mechanical properties. Polym. Int. 2012, 61, 30–37. [Google Scholar] [CrossRef]
- Wang, X.S.; Pang, H.C.; Chen, W.D.; Lin, Y.; Zong, L.S. Controllable fabrication of zinc borate hierarchical nanostructure on brucite surface for enhanced mechanical properties and flame retardant behaviors. ACS Appl. Mater. Interfaces 2014, 6, 7223–7235. [Google Scholar] [CrossRef]
- Tai, Q.L.; Chen, L.J.; Song, L.; Nie, S.B.; Hu, Y. Preparation and thermal properties of a novel flame retardant copolymer. Polym. Degrad. Stab. 2010, 95, 830–836. [Google Scholar] [CrossRef]
- Agrawal, A.; Kaur, R.; Walia, R. Investigation on flammability of rigid polyurethane foam-mineral fillers composite. Fire Mater. 2019, 43, 917–927. [Google Scholar] [CrossRef]
- Shi, X.W.; Dai, X.; Cao, Y.; Li, J.W.; Huo, C.G. Degradable poly(lactic acid)/metal–organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind. Eng. Chem. Res. 2017, 56, 3887–3894. [Google Scholar] [CrossRef]
- Wu, N.; Yang, R.J. Effects of metal oxides on intumescent flame-retardant polypropylene. Polym. Adv. Technol. 2011, 22, 495–501. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, B.; Shi, Y.; Ma, C.; Song, L.; Hu, W.; Hu, Y. Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation. Compos. Part A Appl. Sci. Manuf. 2018, 112, 142–154. [Google Scholar] [CrossRef]
- Lin, B.; Yuen, A.; Li, A.; Zhang, Y.; Chen, T.; Yu, B. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J. Hazard. Mater. 2020, 381, 120952. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Tawiah, B.; Wang, L.; Yuen, A.; Zhang, Z.; Shen, L. Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J. Hazard. Mater. 2019, 374, 110–119. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, B.; Zheng, Y.; Yang, J.; Duan, Z.; Hu, Y. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J. Colloid Interface Sci. 2018, 521, 160–171. [Google Scholar] [CrossRef]
- Chai, H.; Duan, Q.; Jiang, L.; Sun, J. Effect of inorganic additive flame retardant on fire hazard of polyurethane exterior insulation material. J. Therm. Anal. Calorim. 2019, 135, 2857–2868. [Google Scholar] [CrossRef]
Test Item | Ref. RPUF [Standard Deviation] | ZIF-7/RPUF [Standard Deviation] | ZIF-8/RPUF [Standard Deviation] | ZIF-11/RPUF [Standard Deviation] |
---|---|---|---|---|
Maximum compressive strength | 7.96 [0.085] | 9.07 [0.076] | 8.92 [0.140] | 9.16 [0.078] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Ma, D.; Li, S.; Qu, W.; Wang, D. Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams. Polymers 2020, 12, 347. https://doi.org/10.3390/polym12020347
Cheng J, Ma D, Li S, Qu W, Wang D. Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams. Polymers. 2020; 12(2):347. https://doi.org/10.3390/polym12020347
Chicago/Turabian StyleCheng, Jiaji, Dan Ma, Shaoxiang Li, Wenjuan Qu, and Dong Wang. 2020. "Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams" Polymers 12, no. 2: 347. https://doi.org/10.3390/polym12020347
APA StyleCheng, J., Ma, D., Li, S., Qu, W., & Wang, D. (2020). Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams. Polymers, 12(2), 347. https://doi.org/10.3390/polym12020347