Particle Image Velocimetry (PIV) Investigation of the Turbulent Airflow in Slot-Die Melt Blowing
Abstract
:1. Introduction
2. Experiments and Measurements
2.1. Melt-Blown Spinning Device
2.2. PIV Measurement
3. Results and Discussion
3.1. Basic Structure of Turbulent Airflow
3.2. Velocity Distribution of Turbulent Airflow
3.3. Evolution of Turbulent Airflow
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shambaugh, R.L. A Macroscopic View of the Melt-Blowing Process for Producing Microfibers. Ind. Eng. Chem. Res. 1988, 27, 2363–2372. [Google Scholar] [CrossRef]
- Burger, C.; Hsiao, B.S.; Chu, B. Nanofibrous Materials and their Applications. Annu. Rev. Mater. Res. 2006, 36, 333–368. [Google Scholar] [CrossRef]
- Sun, F.; Li, T.T.; Ren, H.T.; Jiang, Q.; Peng, H.K.; Lin, Q.; Lou, C.W.; Lin, J.H. PP/TiO2 Melt-Blown Membranes of Oil/Water Separation and Photocatalysis: Manufacturing Techniques and Property Evaluations. Polymers 2019, 11, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, K.L.; Banerji, A.; Kitto, D.; Bates, F.S.; Ellison, C.J. Mechanically Robust and Recyclable Cross-Linked Fibers from Melt Blown Anthracene-Functionalized Commodity Polymers. ACS. Appl. Mater. Inter. 2019, 11, 12863–12870. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.; Meng, X.H.; Zeng, Y.C. Fabrication of Helical Mircrofibers from Melt Blown Polymer Blends. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 970–977. [Google Scholar] [CrossRef]
- Harpham, A.S.; Shambaugh, R.L. Flow Field of Practical Dual Rectangular Jets. Ind. Eng. Chem. Res. 1996, 35, 3776–3781. [Google Scholar] [CrossRef]
- Harpham, A.S.; Shambaugh, R.L. Velocity and Temperature Fields of Dual Rectangular Jets. Ind. Eng. Chem. Res. 1997, 36, 3937–3943. [Google Scholar] [CrossRef]
- Tate, B.D.; Shambaugh, R.L. Modified Dual Rectangular Jets for Fiber Production. Ind. Eng. Chem. Res. 1998, 37, 3772–3779. [Google Scholar] [CrossRef]
- Tate, B.D.; Shambaugh, R.L. Temperature Fields below Melt-Blowing Dies of Various Geometries. Ind. Eng. Chem. Res. 2004, 43, 5405–5410. [Google Scholar] [CrossRef]
- Shambaugh, R.L.; Krutty, J.D.; Singleton, S.M. Melt Blowing Dies with Louvers. Ind. Eng. Chem. Res. 2015, 54, 12999–13004. [Google Scholar] [CrossRef]
- Yin, H.; Yan, Z.Y.; Ko, W.C.; Bresee, R.R. Fundamental Description of the Melt Blowing Process. Int. Nonwovens J. 2000, 9, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Wang, X.H.; Huang, X.B. Modeling the Air-Jet Flow Field of a Dual Slot Die in the Melt Blowing Nonwoven Process. Text. Res. J. 2004, 74, 1018–1024. [Google Scholar] [CrossRef]
- Sun, Y.F.; Liu, B.W.; Wang, X.H.; Zeng, Y.C. Air-Flow Field of the Melt-Blowing Slot Die via Numerical Simualtion and Multiobjective Genetic Algorithms. J. Appl. Polym. Sci. 2011, 122, 3520–3527. [Google Scholar] [CrossRef]
- Xie, S.; Zeng, Y.C. Turbulent Air Flow Field and Fiber Whipping Motion in the Melt Blowing Process: Experimental Study. Ind. Eng. Chem. Res. 2012, 51, 5346–5352. [Google Scholar] [CrossRef]
- Xie, S.; Han, W.L.; Jiang, G.J.; Chen, C. Turbulent air flow field in slot-die melt blowing for manufacturing microfibrous nonwoven materials. J. Mater. Sci. 2018, 53, 6991–7003. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Han, W.L.; Xu, X.F.; Jiang, G.J.; Shentu, B.Q. Lateral Diffusion of a Free Air Jet in Slot-Die Melt Blowing for Microfiber Whipping. Polymers 2019, 11, 788. [Google Scholar] [CrossRef] [Green Version]
- Krutka, H.M.; Shambaugh, R.L.; Papavassiliou, D.V. Analysis of a Melt-Blowing Die: Comparison of CFD and Experiments. Ind. Eng. Chem. Res. 2002, 41, 5125–5138. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Sun, J.; Troshko, A.; Prasad, R.O. Modeling and Analysis of Polymer and Air Flow Configurations in Nonwovens Industry. In Proceedings of the Beltwide Cotton Conferences, Atlanta, GA, USA, 8–12 January 2002. [Google Scholar]
- Krutka, H.M.; Shambaugh, R.L.; Papavassiliou, D.V. Effects of temperature and geometry on the flow field of the melt blowing process. Ind. Eng. Chem. Res. 2004, 43, 4199–4210. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Wu, L.L.; Chen, T. Numerical Simulation of the Air Flow Field in the Melt Blowing Process with an Auxiliary Nozzle. Heat Transf. Res. 2013, 44, 473–482. [Google Scholar] [CrossRef]
- Hassan, M.A.; Anantharamaiah, N.; Khan, S.A.; Pourdeyhimi, B. Computational Fluid Dynamics Simulations and Experiments of Meltblown Fibrous Media: New Die Designs to Enhance Fiber Attenuation and Filtration Quality. Ind. Eng. Chem. Res. 2016, 55, 2049–2058. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wang, X.H. Investigation on a new annular melt-blowing die using numerical simulation. Ind. Eng. Chem. Res. 2013, 52, 4597–4605. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wang, X.H. Numerical Analysis of New Modified Melt-Blowing Dies for Dual Rectangular Jets. Polym. Eng. Sci. 2014, 54, 110–116. [Google Scholar] [CrossRef]
- Ji, C.C.; Wang, Y.D.; Sun, Y.F. Numerical investigation on a melt-blowing die with internal stabilizers. J. Ind. Text. 2019. [Google Scholar] [CrossRef]
- Xie, S.; Zeng, Y.C. Online Measurement of Fiber Whipping in the Melt-Blowing Process. Ind. Eng. Chem. Res. 2013, 52, 2116–2122. [Google Scholar] [CrossRef]
- Chhabra, R.C.; Shambaugh, R.L. Experimental Measurements of Fiber Threadline Vibrations in the Melt-Blowing Process. Ind. Eng. Chem. Res. 1996, 35, 4366–4374. [Google Scholar] [CrossRef]
- Hao, X.B.; Zeng, Y.C. A Reviws on the Studies of Air Flow Field and Fiber Formation Process during Melt Blowing. Ind. Eng. Chem. Res. 2019, 58, 11624–11637. [Google Scholar] [CrossRef]
- Drabek, J.; Zatloukal, M. Meltblown technology for production of polymeric microfiber/nanofibers: A review. Phys. Fluids 2019, 31, 091301. [Google Scholar] [CrossRef]
- Zhou, C.F.; Tan, D.H.; Janakiraman, A.P.; Kumar, S. Modeling the melt blowing of viscoelastic materials. Chem. Eng. Sci. 2011, 66, 4172–4183. [Google Scholar] [CrossRef]
- Hübsch, F.; Marheineke, N.; Ritter, K.; Wegener, R. Random Field Sampling for a Simplified Model of Melt-Blowing Considering Turbulent Velocity Fluctuations. J. Stat. Phys. 2013, 150, 1115–1137. [Google Scholar] [CrossRef] [Green Version]
- Casey, T.A.; Sakakibara, J.; Thoroddsen, S.T. Scanning tomographic particle image velocimetry applied to a turbulent jet. Phys. Fluids 2013, 25, 025102. [Google Scholar] [CrossRef] [Green Version]
- Ganapathisubramani, B.; Lakshminarasimhan, K.; Clemens, N.T. Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 2008, 598, 141–175. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Jiang, G.; Ye, B.; Shentu, B. Particle Image Velocimetry (PIV) Investigation of the Turbulent Airflow in Slot-Die Melt Blowing. Polymers 2020, 12, 279. https://doi.org/10.3390/polym12020279
Xie S, Jiang G, Ye B, Shentu B. Particle Image Velocimetry (PIV) Investigation of the Turbulent Airflow in Slot-Die Melt Blowing. Polymers. 2020; 12(2):279. https://doi.org/10.3390/polym12020279
Chicago/Turabian StyleXie, Sheng, Guojun Jiang, Baolin Ye, and Baoqing Shentu. 2020. "Particle Image Velocimetry (PIV) Investigation of the Turbulent Airflow in Slot-Die Melt Blowing" Polymers 12, no. 2: 279. https://doi.org/10.3390/polym12020279
APA StyleXie, S., Jiang, G., Ye, B., & Shentu, B. (2020). Particle Image Velocimetry (PIV) Investigation of the Turbulent Airflow in Slot-Die Melt Blowing. Polymers, 12(2), 279. https://doi.org/10.3390/polym12020279