Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Photocuring
3.2. Analysis of Chain Length
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hong, M.; Chen, E.Y.-X. Chemically recyclable polymers: A circular economy approach to sustainability. Green Chem. 2017, 19, 3692–3706. [Google Scholar] [CrossRef]
- Shirai, M. Photocrosslinkable polymers with degradable properties. Polym. J. 2014, 46, 859–865. [Google Scholar] [CrossRef]
- Ma, S.; Webster, D.C. Degradable thermosets based on labile bonds or linkages: A review. Prog. Polym. Sci. 2018, 76, 65–110. [Google Scholar] [CrossRef]
- Ogino, K.; Chen, J.-S.; Ober, C.K. Synthesis and Characterization of Thermally Degradable Polymer Networks. Chem. Mater. 1998, 10, 3833–3838. [Google Scholar] [CrossRef]
- Wilbon, P.A.; Swartz, J.L.; Meltzer, N.R.; Brutman, J.P.; Hillmyer, M.A.; Wissinger, J.E. Degradable Thermosets Derived from an Isosorbide/Succinic Anhydride Monomer and Glycerol. ACS Sustain. Chem. Eng. 2017, 5, 9185–9190. [Google Scholar] [CrossRef]
- Roy, M.; Noordzij, G.J.; van den Boomen, Y.; Rastogi, S.; Wilsens, C.H.R.M. Renewable (Bis)pyrrolidone Based Monomers as Components for Thermally Curable and Enzymatically Depolymerizable 2-Oxazoline Thermoset Resins. ACS Sustain. Chem. Eng. 2018, 6, 5053–5066. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Xu, Z.; Wang, Y.; Chen, S.; Miao, M.; Zhang, D. Synthesis and Degradation Mechanism of Self-Cured Hyperbranched Epoxy Resins from Natural Citric Acid. ACS Omega 2018, 3, 8141–8148. [Google Scholar] [CrossRef]
- Zhang, Q.; Phillips, H.R.; Purchel, A.; Hexum, J.K.; Reineke, T.M. Sustainable and Degradable Epoxy Resins from Trehalose, Cyclodextrin, and Soybean Oil Yield Tunable Mechanical Performance and Cell Adhesion. ACS Sustain. Chem. Eng. 2018, 6, 14967–14978. [Google Scholar] [CrossRef]
- Okamura, H.; Nomura, K.; Matsumoto, A. Photo-degradation of Reworkable Resin: A Mechanical Study. J. Photopolym. Sci. Technol. 2017, 30, 689–694. [Google Scholar] [CrossRef]
- Okamura, H.; Matsumoto, A.; Minokami, K.; Miyauchi, S. Photo-thermal Dual Curing of Polysilane/diarylfluorene Blends-Fabrication of Films with High and Tunable Refractive Indices. J. Photopolym. Sci. Technol. 2018, 31, 503–510. [Google Scholar] [CrossRef]
- Burdick, J.A.; Lovestead, T.M.; Anseth, K.S. Kinetic Chain Lengths in Highly Cross-Linked Networks Formed by the Photoinitiated Polymerization of Divinyl Monomers: A Gel Permeation Chromatography Investigation. Biomacromolecules 2003, 4, 149–156. [Google Scholar] [CrossRef]
- Shirai, M.; Mitsukura, K.; Okamura, H. Chain Propagation in UV Curing of Di(meth)acrylates. Chem. Mater. 2008, 20, 1971–1976. [Google Scholar] [CrossRef]
- Matsukawa, D.; Okamura, H.; Shirai, M. Reworkable dimethacrylates with low shrinkage and their application to UV nanoimprint lithography. J. Mater. Chem. 2011, 21, 10407–10414. [Google Scholar] [CrossRef]
- Okamura, H.; Shirai, M. Reworkable Resin using Thiol-ene System. J. Photopolym. Sci. Technol. 2011, 24, 561–564. [Google Scholar] [CrossRef]
- Roper, T.M.; Kwee, T.; Lee, T.Y.; Guymon, C.A.; Hoyle, C.E. Photopolymerization of pigmented thiol-ene systems. Polymer 2004, 45, 2921–2929. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Q.; Shin, J.; Hoyle, C.E. Effects of Monomer Functionality and Hydrogen Bonding on the Polymerization Kinetics and Properties of Thiol-Ene Networks. Macromolecules 2009, 42, 2994–2999. [Google Scholar] [CrossRef]
- Shin, J.; Nazarenko, S.; Hoyle, C.E. Effects of Chemical Modification of Thiol-Ene Networks on Enthalpy Relaxation. Macromolecules 2009, 42, 6549–6557. [Google Scholar] [CrossRef]
- Kwisnek, L.; Kaushik, M.; Hoyle, C.E.; Nazarenko, S. Free Volume, Transport, and Physical Properties of n-Alkyl Derivatized Thiol-Ene Networks: Chain Length Effect. Macromolecules 2010, 43, 3859–3867. [Google Scholar] [CrossRef]
- Kwisnek, L.; Nazarenko, S.; Hoyle, C.E. Free Volume, Oxygen Transport Properties of Thiol-Ene Networks. Macromolecules 2009, 42, 7031–7041. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, H.; Hoyle, C.E. The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties. Polymer 2009, 50, 2237–2245. [Google Scholar] [CrossRef]
- Lee, T.Y.; Smith, Z.; Reddy, S.R.; Cramer, N.B.; Bowman, C.N. Thiol-Allyl Ether-Methacrylate Ternary Systems. Polymerization Mechanism. Macromolecules 2007, 40, 1466–1472. [Google Scholar] [CrossRef]
- Kloxin, C.J.; Scott, T.F.; Bowman, C.N. Stress Relaxation via Addition-Fragmentation Chain Transfer in a Thiol-ene Photopolymerization. Macromolecules 2009, 42, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.A.; Jankousky, K.C.; Bowman, C.N. Thiol-ene functionalized siloxanes for use aselastomeric dental impression materials. Dent. Mater. 2014, 30, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Podgórski, M.; Becka, E.; Chatani, S.; Claudino, M.; Bowman, C.N. Ester-free thiol-X resins: New materials with enhanced mechanical behavior and solvent resistance. Polym. Chem. 2015, 6, 2234–2240. [Google Scholar] [CrossRef]
- Sparks, B.J.; Hoff, E.F.T.; Hayes, L.T.P.; Patton, D.L. Mussel-Inspired Thiol-Ene Polymer Networks: Influencing Network Properties and Adhesion with Catechol Functionality. Chem. Mater. 2012, 24, 3633–3642. [Google Scholar] [CrossRef]
- Reit, R.; Zamorano, D.; Parker, S.; Simon, D.; Lund, B.; Voit, W.; Ware, T.H. Hydrolytically Stable Thiol-ene Networks for Flexible Bioelectronics. ACS Appl. Mater. Interfaces 2015, 7, 28673–28681. [Google Scholar] [CrossRef] [PubMed]
- Kwisnek, L.; Goetz, J.; Meyers, K.P.; Heinz, S.R.; Wiggins, J.S.; Nazarenko, S. PEG Containing Thiol-Ene Network Membranes for CO2 Separation: Effect of Cross-Linking on Thermal, Mechanical, and Gas Transport Properties. Macromolecules 2014, 47, 3243–3253. [Google Scholar] [CrossRef]
- McNair, O.D.; Sparks, B.J.; Janisse, A.P.; Brent, D.P.; Derek, L.; Patton, D.P.; Savin, D.A. Highly Tunable Thiol-Ene Networks via Dual Thiol Addition. Macromolecules 2013, 46, 5614–5621. [Google Scholar] [CrossRef]
- Fleischmann, E.-K.; Forst, F.R.; Köder, K.; Kapernaum, N.; Zentel, R. Microactuators from a main-chain liquid crystalline elastomer via thiol-ene “click” chemistry. J. Mater. Chem. C 2013, 1, 5885–5891. [Google Scholar] [CrossRef]
- McNair, O.D.; Janisse, A.P.; Krzeminski, D.E.; Brent, D.E.; Gould, T.E.; Rawlins, J.W.; Savin, D.A. Impact Properties of Thiol-Ene Networks. ACS Appl. Mater. Interfaces 2013, 5, 11004–11013. [Google Scholar] [CrossRef]
- McNair, O.D.; Gould, T.E.; Piland, S.G.; Savin, D.A. Characterization of Mouthguard Materials: A Comparison of a Commercial Material to a Novel Thiolene Family. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Bhagat, S.D.; Da Silva Filho, E.B.; Stiegman, A.E. High Refractive Index Polymer Composites Synthesized by Cross-Linking of Oxozirconium Clusters Through Thiol-Ene Polymerization. Macromol. Mater. Eng. 2015, 300, 580–585. [Google Scholar] [CrossRef]
- Davis, A.R.; Carter, K.R. Controlling Optoelectronic Behavior in Poly(fluorene) Networks Using Thiol-Ene Photo-Click Chemistry. Macromolecules 2015, 48, 1711–1722. [Google Scholar] [CrossRef]
- Michal, B.T.; Brenn, W.A.; Nguyen, B.N.; McCorkle, L.S.; Meador, M.A.B.; Rowan, S.J. Thermoresponsive Shape-Memory Aerogels from Thiol-Ene Networks. Chem. Mater. 2016, 28, 2341–2347. [Google Scholar] [CrossRef]
- Yang, P.; Zhu, G.; Xu, S.; Zhang, X.; Shen, X.; Cui, X.; Gao, Y.; Nie, J. A Novel Shape Memory Poly(ε-caprolactone) Network via UV-Triggered Thiol-Ene Reaction. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 692–701. [Google Scholar] [CrossRef]
- Okamura, H.; Muramatsu, K.; Nakajiri, H.; Shirai, M.; Matsumoto, A. Photoresists for Screen Printing Plates with High Resolution and Sensitivity Using Thiol-ene Reaction. J. Photopolym. Sci. Technol. 2015, 28, 61–66. [Google Scholar] [CrossRef]
- Feillée, N.; De Fina, M.; Ponche, A.; Vaulot, C.; Rigolet, S.; Jacomine, L.; Majjad, H.; Ley, C.; Chemto, A. Step-Growth Thiol-Thiol Photopolymerization as Radiation Curing Technology. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 117–128. [Google Scholar] [CrossRef]
Formulation 1 | [(meth)acryl Unit/Thiol Unit] | Conversion (%) 2 | Insoluble Fraction (%) | Mp3 | Mw4 | Mn5 | Mw/Mn | n6 | Atmos-phere | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DHDA | DHDMA | BzA | PEMB | TPMB | BDMB | (meth) acryl Unit | Thiol Unit | ||||||||
1 | 1 | 1/1 | 99 | 35 | 99 | 700 | 1200 | 820 | 1.5 | 3.7 | N2 | ||||
1 | 1 | 1/1 | 96 | 33 | 99 | 740 | 1000 | 760 | 1.3 | 4.2 | air | ||||
2 | 1 | 2/1 | 90 | 47 | 91 | 920 | 1400 | 950 | 1.5 | 9.8 | N2 | ||||
1 | 1 | 1/1 | 92 | 29 | 100 | 620 | 1200 | 700 | 1.7 | 3.2 | N2 | ||||
1 | 1 | 1/1 | 98 | 40 | 98 | 570 | 770 | 600 | 1.3 | 2.7 | N2 | ||||
1 | 1 | 1/1 | 98 | 44 | 91 | 250 | 450 | 260 | 1.7 | 1.7 | N2 | ||||
1 | 1 | 1 | 2/1 | 96 | 25 | 96 | 1490 | 1900 | 1300 | 1.4 | 7.6 | N2 | |||
1 | 3 | 1 | 4/1 | 97 | 14 | 95 | 2740 | 3200 | 2100 | 1.5 | 14 | N2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okamura, H.; Yamagaki, M.; Nakata, K. Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins. Polymers 2019, 11, 5. https://doi.org/10.3390/polym11010005
Okamura H, Yamagaki M, Nakata K. Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins. Polymers. 2019; 11(1):5. https://doi.org/10.3390/polym11010005
Chicago/Turabian StyleOkamura, Haruyuki, Masashi Yamagaki, and Kyohei Nakata. 2019. "Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins" Polymers 11, no. 1: 5. https://doi.org/10.3390/polym11010005
APA StyleOkamura, H., Yamagaki, M., & Nakata, K. (2019). Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins. Polymers, 11(1), 5. https://doi.org/10.3390/polym11010005