Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanocomposites
2.3. Investigation of Nanocapsules
2.3.1. Morphology and Size Analysis
2.3.2. Nanoparticle Yield and Encapsulation Efficiency
2.3.3. In Vitro Drug Release Experiment
2.4. Attachment of Fluorescent Dye
2.5. Cell Cultures
2.6. In Vitro Cellular Uptake and Cytotoxicity Studies
3. Results and Discussion
3.1. Preliminary Method Development
3.2. Size, Yield, Drug Encapsulation Efficiency, and Drug Encapsulation Content
3.3. In Vitro Sorafenib Release
3.4. Cellular Uptake
3.5. Cytotoxicity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heidarinasab, A.; Panahi, H.A.; Faramarzi, M.; Farjadian, F. Synthesis of thermosensitive magnetic nanocarrier for controlled sorafenib delivery. Mater. Sci. Eng. C 2016, 67, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Cagel, M.; Grotz, E.; Bernabeu, E.; Moretton, M.A.; Chiappetta, D.A. Doxorubicin: Nanotechnological overviews from bench to bedside. Drug Discov. Today 2017, 22, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Boonkaew, B.; Arora, J.; Mandava, S.H.; Maddox, M.M.; Chava, S.; Callanghan, C.; He, J.; Dash, S.; John, V.T.; et al. Comparison of sorafenib-loaded poly(lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma. J. Pharm. Sci. 2015, 104, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, L.; Liu, T.; Zhang, L.; Yao, Y.; Yu, D.; Wang, L.; Zhang, N. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Nanoscale 2014, 6, 3231–3242. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, M.D.; Choi, C.W.; Chung, C.W.; Ha, S.H.; Kim, C.H. Antitumor activity of sorafenib-incorporated nanoparticles of dextran/poly(dl-lactide-co-glycolide) block copolymer. Nanoscale Res. Lett. 2012, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Park, H.; Yoo, K.H. Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv. Mater. 2010, 22, 4049–4053. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.H.; Lee, T.Y.; Fu, P.C.; Lo, C.L.; Chiang, Y.T. Multifunctional polymer nanoparticles for dual drug release and cancer cell targeting. Polymers 2017, 9, 213. [Google Scholar] [CrossRef]
- Malarvizhi, G.L.; Retnakumari, A.P.; Nair, S.; Koyakutty, M. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. Nanomed. Nanotechnol. 2014, 10, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, J.; Chan, H.F.; Skibba, M.; Liang, G.; Chen, M. iRGD decorated lipid-polymer hybrid nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma efficacy. Nanomed. Nanotechnol. 2016, 12, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Cui, M.; Yu, G.; Wang, J.; Song, T. Facile fabrication of reduction-responsive supramolecular nanoassemblies for co-delivery of doxorubicin and sorafenib toward hepatoma cells. Front. Pharm. 2018, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Tan, L.; He, C.; Liu, B.; Xu, Y.; Zhu, Z.; Shao, Z.; Gong, B.; Shen, Y.-M. Redox-responsive micelles self-assembled from dynamic covalent block copolymer rsfor intracellular drug delivery. Acta Biomater. 2015, 17, 193–200. [Google Scholar] [CrossRef]
- Khemani, M.; Sharon, M.; Sharon, M. pH Dependent Encapsulation of Doxorubicin in PLGA. Ann. Biol. Res. 2012, 3, 4414–4419. [Google Scholar]
- Fox, M.E.; Szoka, F.C.; Frechet, J.M.J. Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture. Acc. Chem. Res. 2009, 42, 1141–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, H.; Watanabe, R.; Choyke, P.L. Improving conventional enhanced permeability and retention (EPR) effectts; what is the appropriate target? Theranostics 2013, 4, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Halayqa, M.; Domanska, U. PLGA Biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: Effect of formulation and release. Int. J. Mol. Sci. 2014, 15, 23909–23923. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.T.; Gao, D.Y.; Liu, Y.C.; Sung, Y.C.; Wan, D.; Liu, J.Y.; Chiang, T.; Wang, L.; Chen, Y. Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J. Control. Release 2016, 221, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Park, T.G.; Lu, W.; Crotts, G. Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(d,l-lactic acid-co-glycolic acid) microspheres. J. Control. Release 1995, 33, 211–222. [Google Scholar] [CrossRef]
- Shi, J.H.; Chen, J.; Wang, J.; Zhu, Y.Y.; Wang, Q. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking. Spectrochim. Acta Part A 2015, 149, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Liu, J.; Zhao, Z.; Zhao, Y.; Dong, L.; Yang, M.; Zhou, J.; Huo, M. Redox sensitive hyaluronic acid-decorated graphene oxide for photothermally controlled tumor-cytoplasm-selective rapid drug delivery. Adv. Funct. Mater. 2017, 14, 1604620. [Google Scholar] [CrossRef]
Time (min) | Methanol (%) | 0.1% Tetrafluoroacetic Acid in H2O (%) |
---|---|---|
0.0 | 30.0 | 70.0 |
5.0 | 30.0 | 70.0 |
8.00 | 40.0 | 60.0 |
11.00 | 50.0 | 50.0 |
14.00 | 60.0 | 40.0 |
17.00 | 70.0 | 30.0 |
20.00 | 80.0 | 20.0 |
23.00 | 90.0 | 10.0 |
27.00 | 100.0 | 0.0 |
30.00 | 100.0 | 0.0 |
35.00 | 30.0 | 70.0 |
Polymer | PLGA RG 502H | PLGA RG 752H | PEG-PLGA |
---|---|---|---|
Yield (%) | 70.0 | 49.7 | 75.3 |
Intensity mean diameter (nm) | 164.6 | 142.2 | 177.2 |
PDI | 0.203 | 0.123 | 0.076 |
EE (DOX) (%) | 74 | 52 | 69 |
EE (SOR) (%) | 67 | 55 | 88 |
DOX loading (%) | 4.81 | 4.76 | 4.17 |
SOR loading (%) | 4.35 | 5.03 | 5.31 |
Sample | Negative Control | PLGA Blank | PLGA-DOX-SOR | PEG-PLGA Blank | PEG-PLGA-DOX-SOR |
---|---|---|---|---|---|
mean fluorescent intensity | 22 | 17,105 | 22,243 | 21,846 | 45,765 |
SD (%) | 4.5 | 1.7 | 30.0 | 3.9 | 24.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babos, G.; Biró, E.; Meiczinger, M.; Feczkó, T. Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles. Polymers 2018, 10, 895. https://doi.org/10.3390/polym10080895
Babos G, Biró E, Meiczinger M, Feczkó T. Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles. Polymers. 2018; 10(8):895. https://doi.org/10.3390/polym10080895
Chicago/Turabian StyleBabos, György, Emese Biró, Mónika Meiczinger, and Tivadar Feczkó. 2018. "Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles" Polymers 10, no. 8: 895. https://doi.org/10.3390/polym10080895
APA StyleBabos, G., Biró, E., Meiczinger, M., & Feczkó, T. (2018). Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles. Polymers, 10(8), 895. https://doi.org/10.3390/polym10080895