Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters
Abstract
1. Introduction
2. Design Principle
3. Experiments
3.1. Bandwidth Tunable PSCLC Filter
3.2. Bandwidth Tunable PSBPLC Filter
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hikmet, R.A.M.; Kemperman, H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 1998, 392, 476–479. [Google Scholar] [CrossRef]
- Hikmet, R.A.M.; Kemperman, H. Switchable mirrors of chiral liquid crystal gels. Liquid Cryst. 1999, 26, 1645–1653. [Google Scholar] [CrossRef]
- Xu, X.W.; Liu, Y.J.; Wang, F.; Luo, D. Narrow linewidth and temperature insensitive blue phase liquid crystal films. IEEE Photonics J. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Gevorgyan, A.H. Resonant interaction of light with a stack of alternating layers of a cholesteric liquid crystal and an isotropic medium. Phys. Rev. E 2015, 92, 062501. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jin, M.; Zhang, S. Polarization-independent bandwidth-variable tunable optical filter based on cholesteric liquid crystals. Jpn. J. Appl. Phys. 2014, 53, 072601. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, S. Widely tunable optical filter with variable bandwidth based on the thermal effect on cholesteric liquid crystals. Appl. Opt. 2012, 51, 5780–5784. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, S. Optical filter with tunable wavelength and bandwidth based on cholesteric liquid crystals. Opt. Lett. 2011, 36, 4563–4565. [Google Scholar] [CrossRef]
- Palto, S.P.; Barnik, M.I.; Geivandov, A.R.; Kasyanova, I.V.; Palto, V.S. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals. Phys. Rev. E 2015, 92, 032502. [Google Scholar] [CrossRef]
- Ozaki, R.; Matsuura, K.; Kadowaki, K. Theoretical study of bandwidth control of full-pitch band of a ferroelectric liquid crystal by varying incident angle and electric field. Appl. Phys. Express 2017, 10, 081601. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Johnson, K.M. Analog smectic c * ferroelectric liquid crystal fabry-perot optical tunable filter. IEEE Photonics Technol. Lett. 1995, 7, 1309–1311. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Chiou, J.-Y.; Yang, K.-X. Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field. Appl. Phys. Lett. 2011, 99, 181119. [Google Scholar] [CrossRef]
- Wang, C.-T.; Jau, H.-C.; Lin, T.-H. Bistable cholesteric-blue phase liquid crystal using thermal hysteresis. Opt. Mater. 2011, 34, 248–250. [Google Scholar] [CrossRef]
- Yoshida, H.; Anucha, K.; Ogawa, Y.; Kawata, Y.; Ozaki, M.; Fukuda, J.-I.; Kikuchi, H. Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals. Phys. Rev. E 2016, 94, 042703. [Google Scholar] [CrossRef]
- Sala-Tefelska, M.; Orzechowski, K.; Sala, F.; Woliński, T.; Strzeżysz, O.; Kula, P. The influence of orienting layers on blue phase liquid crystals in rectangular geometries. Photonics Lett. Pol. 2018, 10, 100–102. [Google Scholar] [CrossRef]
- Sala-Tefelska, M.M.; Orzechowski, K.; Sierakowski, M.; Siarkowska, A.; Woliński, T.R.; Strzeżysz, O.; Kula, P. Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains. Opt. Mater. 2018, 75, 211–215. [Google Scholar] [CrossRef]
- Zhang, L.; He, W.; Yuan, X.; Hu, W.; Cao, H.; Yang, H.; Zhu, S. Broadband reflection characteristic of polymer-stabilised cholesteric liquid crystal with pitch gradient induced by a hydrogen bond. Liquid Cryst. 2010, 37, 1275–1280. [Google Scholar] [CrossRef]
- Fuh, A.Y.-G.; Ho, S.-J.; Wu, S.-T.; Li, M.-S. Optical filter with tunable wavelength and bandwidth based on phototunable cholesteric liquid crystals. Appl. Opt. 2014, 53, 1658–1662. [Google Scholar] [CrossRef]
- Balamurugan, R.; Liu, J.-H. A review of the fabrication of photonic band gap materials based on cholesteric liquid crystals. React. Funct. Polym. 2016, 105, 9–34. [Google Scholar] [CrossRef]
- Grzelczyk, D.; Awrejcewicz, J. Calculation of reflectance and transmittance of optical birefringent networks based on cholesteric liquid crystals. Lat. Am. J. Solids Struct. 2019, 16. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Yu, Y.; Yang, Z.; He, W.; Cao, H.; Wang, D. The temperature range and optical properties of the liquid crystalline blue phase in inverse opal structures. J. Mater. Chem. C 2018, 6, 11071–11077. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Wang, C.-T.; Hsu, C.-Y.; Lin, T.-H.; Liu, J.-H. Optically tuneable blue phase photonic band gaps. Appl. Phys. Lett. 2010, 96, 121103. [Google Scholar] [CrossRef]
- Ogawa, Y.; Fukuda, J.-I.; Yoshida, H.; Ozaki, M. Photonic band structure and transmission analysis of cholesteric blue phase ii: Electrostriction in the [100] direction. Opt. Express 2014, 22, 3766–3772. [Google Scholar] [CrossRef]
- Tondiglia, V.P.; Natarajan, L.V.; Bailey, C.A.; McConney, M.E.; Lee, K.M.; Bunning, T.J.; Zola, R.; Nemati, H.; Yang, D.-K.; White, T.J.; et al. Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt. Mater. Express 2014, 4, 1465–1472. [Google Scholar] [CrossRef]
- Khandelwal, H.; Debije, M.G.; White, T.J.; Schenning, A.P.H.J. Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm. J. Mater. Chem. A 2016, 4, 6064–6069. [Google Scholar] [CrossRef]
- Lin, J.-D.; Huang, S.-Y.; Wang, H.-S.; Lin, S.-H.; Mo, T.-S.; Horng, C.-T.; Yeh, H.-C.; Chen, L.-J.; Lin, H.-L.; Lee, C.-R. Spatially tunable photonic bandgap of wide spectral range and lasing emission based on a blue phase wedge cell. Opt. Express 2014, 22, 29479–29492. [Google Scholar] [CrossRef] [PubMed]
- Tondiglia, V.T.; Natarajan, L.V.; Bailey, C.A.; Duning, M.M.; Sutherland, R.L.; Ke-Yang, D.; Voevodin, A.; White, T.J.; Bunning, T.J. Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J. Appl. Phys. 2011, 110, 053109. [Google Scholar] [CrossRef]
- Mitov, M. Cholesteric liquid crystals with a broad light reflection band. Adv. Mater. 2012, 24, 6260–6276. [Google Scholar] [CrossRef]
- White, T.J.; Freer, A.S.; Tabiryan, N.V.; Bunning, T.J. Photoinduced broadening of cholesteric liquid crystal reflectors. J. Appl. Phys. 2010, 107, 073110. [Google Scholar] [CrossRef]
- Ogiwara, A.; Kakiuchida, H. Thermally tunable light filter composed of cholesteric liquid crystals with different temperature dependence. Solar Energy. Mater. Sol. Cells 2016, 157, 250–258. [Google Scholar] [CrossRef]
- Hirota, Y.; Ji, Y.; Serra, F.; Tajbakhsh, A.R.; Terentjev, E.M. Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers. Opt. Express 2008, 16, 5320–5331. [Google Scholar] [CrossRef]
- Lin, J.-D.; Wang, T.-Y.; Mo, T.-S.; Huang, S.-Y.; Lee, C.-R. Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase. Sci. Rep. 2016, 6, 30407. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cao, H.; Li, K.; Song, P.; Wu, X.; Yang, H. Control homogeneous alignment of chiral nematic liquid crystal with smectic-like short-range order by thermal treatment. Colloids Surf. A Physicochem. Eng. Asp. 2012, 410, 31–37. [Google Scholar] [CrossRef]
- Joshi, P.; Shang, X.; De Smet, J.; Islamai, E.; Cuypers, D.; Van Steenberge, G.; Van Vlierberghe, S.; Dubruel, P.; De Smet, H. On the effect of alignment layers on blue phase liquid crystals. Appl. Phys. Lett. 2015, 106, 101105. [Google Scholar] [CrossRef]
- Xu, M.; Xu, F.; Yang, D.-K. Effects of cell structure on the reflection of cholesteric liquid crystal displays. J. Appl. Phys. 1998, 83, 1938–1944. [Google Scholar] [CrossRef]
- Nayek, P.; Jeong, H.; Park, H.R.; Kang, S.-W.; Lee, S.H.; Park, H.S.; Lee, H.J.; Kim, H.S. Tailoring monodomain in blue phase liquid crystal by surface pinning effect. Appl. Phys. Express 2012, 5, 051701. [Google Scholar] [CrossRef]
- Clarke, R.H. A theory for the christiansen filter. Appl. Opt. 1968, 7, 861–868. [Google Scholar] [CrossRef]
- Hirosawa, I.; Sasaki, N. Influence of annealing on molecular orientation of rubbed polyimide film observed by reflection ellipsometry. Jpn. J. Appl. Phys. 1997, 36, 6953–6956. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Lu, J. Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters. Crystals 2019, 9, 268. https://doi.org/10.3390/cryst9050268
Sun C, Lu J. Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters. Crystals. 2019; 9(5):268. https://doi.org/10.3390/cryst9050268
Chicago/Turabian StyleSun, Changli, and Jiangang Lu. 2019. "Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters" Crystals 9, no. 5: 268. https://doi.org/10.3390/cryst9050268
APA StyleSun, C., & Lu, J. (2019). Effect of Sectional Polymerization Process on Tunable Twist Structure Liquid Crystal Filters. Crystals, 9(5), 268. https://doi.org/10.3390/cryst9050268