Structure of Cubic Al73.8Pd13.6Fe12.6 Phase with High Al Content
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Crystal Structure Determination
3.3. Topological Features
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. [Google Scholar] [CrossRef]
- Steurer, W. Quasicrystals: What do we know? What do we want to know? What can we know? Acta Crystallogr. A 2018, 74, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Senabulya, N.; Xiao, X.; Han, I.; Shahani, A.J. On the kinetic and equilibrium shapes of icosahedral Al71Pd19Mn10 quasicrystals. Script. Mater. 2018, 146, 218–221. [Google Scholar] [CrossRef]
- Strzalka, R.; Buganski, I.; Kuczera, P.; Pytlik, L.; Wolny, J. Atomic structure of decagonal Al-Cu-Rh quasicrystal-revisited. Crystals 2019, 9, 78. [Google Scholar] [CrossRef]
- Tsai, A.P.; Yamamoto, A. Stable one-dimensional quasicrystals in Al-Pd-Fe alloys. Philos. Mag. Lett. 1992, 66, 203–208. [Google Scholar] [CrossRef]
- Tsai, A.P.; Inoue, A.; Masumoto, T. A Stable Quasicrystal in Al-Cu-Fe System. Jpn. J. Appl. Phys. 1987, 26, L1505–L1507. [Google Scholar] [CrossRef]
- Quiquandon, M.; Gratias, D. Unique six-dimensional structural model for Al-Pd-Mn and Al-Cu-Fe. Phys. Rev. B 2006, 74, 214205. [Google Scholar] [CrossRef]
- Beauchesne, J.T.; Caillard, D.; Mompiou, F.; Ochin, P.; Quiquandon, M.; Gratias, D. Study of quasicrystals obtained from a structural model of icosahedral phases of type F AlPdMn/AlCuFe. Z. Kristallogr. 2008, 223, 823–826. [Google Scholar] [CrossRef]
- Divincenzo, D.P.; Krakow, W.; Bancel, P.A. An atomic model of Al-Cu-Fe, and its comparison with high-resolution electron microscope images. J. Non-Crystal. Solids 1993, 153–154, 145–149. [Google Scholar] [CrossRef]
- Chen, Y.J.; Qiang, J.B.; Dong, C. Smearing-type wear behavior of Al62Cu25.5Fe12.5. Intermetallics 2016, 68, 23–30. [Google Scholar] [CrossRef]
- Bindi, L.; Eiler, J.M.; Guan, Y.B.; Hollister, L.S.; MacPherson, G.; Steinhardt, P.J.; Yao, N. Evidence for the extraterrestrial origin of a natural quasicrystal. Proc. Natl. Acad. Sci. USA 2012, 109, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Hollister, L.S.; Bindi, L.; Yao, N.; Poirier, G.R.; Andronicos, C.L.; MacPherson, G.J.; Lin, C.; Distler, V.V.; Eddy, M.P.; Kostin, A.; et al. Impact-induced shock and the formation of natural quasicrystals in the early solar system. Nat. Comm. 2014, 5, 4040. [Google Scholar] [CrossRef] [PubMed]
- Asimow, P.D.; Lin, C.; Bindi, L.; Ma, C.; Tschauner, O.; Hollister, L.S.; Steinhardt, P.J. Shock synthesis of quasicrystals with implications for their origin in asteroid collisions. Proc. Natl. Acad. Sci. USA 2016, 113, 7077–7081. [Google Scholar] [CrossRef] [PubMed]
- Bindi, L.; Lin, C.; Ma, C.; Steinhardt, P.J. Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory. Sci. Rep. 2016, 6, 38117. [Google Scholar] [CrossRef]
- Lin, C.; Hollister, L.S.; MacPherson, G.J.; Bindi, L.; Ma, C.; Andronicos, C.L.; Steinhardt, P.J. Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space. Sci. Rep. 2017, 7, 1637. [Google Scholar] [CrossRef]
- Stagno, V.; Bindi, L.; Shibazaki, Y.; Tange, Y.; Higo, Y.; Mao, H.-K.; Steinhardt, P.J.; Fei, Y.W. Icosahedral AlCuFe quasicrystal at high pressure and temperature and its implications for the stability of icosahedrite. Sci. Rep. 2014, 4, 5869. [Google Scholar] [CrossRef]
- Stagno, V.; Bindi, L.; Park, C.; Tkachev, S.; Prakapenka, V.B.; Mao, H.-K.; Hemley, R.J.; Steinhardt, P.J.; Fei, Y.W. Quasicrystals at extreme conditions: The role of pressure in stabilizing icosahedral Al63Cu24Fe13 at high temperature. Am. Mineral. 2015, 100, 2412–2418. [Google Scholar] [CrossRef]
- Takagi, S.; Kyono, A.; Mitani, S.; Sugano, N.; Nakamoto, Y.; Hirao, N. X-ray diffraction study of the icosahedral AlCuFe quasicrystal at megabar pressures. Mater. Lett. 2015, 161, 13–16. [Google Scholar] [CrossRef]
- Hong, S.T. Three-Dimensional Modeling of Quasicrystal Structures from X-ray Diffraction: An Icosahedral Al–Cu–Fe Alloy. Inorg. Chem. 2017, 56, 7354–7359. [Google Scholar] [CrossRef]
- Parsamehr, H.; Lu, Y.J.; Lin, T.Y.; Tsai, A.P.; Lai, C.H. In-Situ observation of local atomic structure of Al-Cu-Fe quasicrystal formation. Sci. Rep. 2019, 9, 1245. [Google Scholar] [CrossRef]
- Bindi, L.; Steinhardt, P.J.; Yao, N.; Lu, P.J. Natural quasicrystals. Science 2009, 324, 1306–1309. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.; Hiraga, K.; Saito, K. Cubic approximants in the Al-Pd-Fe and Al-Pd-Ru systems. Mater. Sci. Eng. A 2000, 294–296, 345–347. [Google Scholar] [CrossRef]
- Sugiyama, K.; Kato, T.; Ogawa, T.; Hiraga, K.; Saito, K. Crystal structure of a new 1/1-rational approximant for the Al-Cu-Ru icosahedral phase. J. Alloys Compd. 2000, 299, 169–174. [Google Scholar] [CrossRef]
- Dshemuchadse, J.; Kuczera, P.; Steurer, W. A new cluster-based cubic phase in the Al-Cu-Ir system. Intermetallics 2013, 32, 337–343. [Google Scholar] [CrossRef]
- Fujita, N. A structural reinvestigation of α-AlCuRu as merohedric twins. Presented at the Aperiodic 2018, 9th Conference on Aperiodic Crystals, Ames, IA, USA, 8–13 July 2018. [Google Scholar]
- Simura, R.; Sugiyama, K.; Suzuki, S.; Kawamata, T. Crystal Structure of the C-AlRuNi Phase. Mater. Trans. 2017, 58, 1101–1105. [Google Scholar] [CrossRef]
- Raghavan, V. Al-Cu-Fe (Aluminum-Copper-Iron). JPEDAV 2005, 26, 59–64. [Google Scholar] [CrossRef]
- Raghavan, V. Al-Mn-Pd (Aluminum-Manganese-Palladium). JPEDAV 2009, 30, 71–76. [Google Scholar] [CrossRef]
- Raghavan, V. Al-Fe-Pd (Aluminum-Iron-Palladium). JPEDAV 2007, 28, 374–376. [Google Scholar] [CrossRef]
- Tsai, A.P.; Yamamoto, A. Quasicrystalline and crystalline phases in Al-Pd-Fe system. Philos. Mag. Lett. 1993, 34, 155–161. [Google Scholar]
- Peterson, G.G.C.; Yannello, V.J.; Fredrickson, D.C. Inducing Complexity in Intermetallics through Electron–Hole Matching: The Structure of Fe14Pd17Al69. Angew. Chem. Int. Ed. 2017, 56, 10145–10150. [Google Scholar] [CrossRef]
- Edler, F.; Gramlich, V.; Steurer, W. Structure and disorder phenomena of cubic Al39Fe2Pd21 in comparison with related structures. J. Alloys Compd. 1998, 269, 7–12. [Google Scholar] [CrossRef]
- Balanetskyy, S.O.; Grushko, B.; Urban, K.; Velikanova, T.Y. Physicochemical Materials Research—Ternary Cubic Phases in the Al-Pd-Fe System. Powder Metall. Met. Ceram. 2004, 43, 396–405. [Google Scholar] [CrossRef]
- Balanetskyy, S.; Grushko, B.; Velikanova, T.Y.; Urban, K. Investigation of the Al-Pd-Fe phase diagram between 50 and 100 at.% Al: Ternary phases. J. Alloys Compd. 2004, 368, 169–174. [Google Scholar] [CrossRef]
- Balanetskyy, S.; Grushko, B.; Velikanova, T.Y.; Urban, K. An investigation of the Al-Pd-Fe phase diagram between 50 and 100 at.% Al: phase equilibria at 750 °C. J. Alloys Compd. 2004, 376, 158–164. [Google Scholar] [CrossRef]
- APEX3; SAINT; SADABS. Software for Data Reduction, Absorption Correction and Structure Solution; Bruker AXS Inc.: Madison, WI, USA, 2015. [Google Scholar]
- Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Akhmetshina, T.G.; Blatov, V.A. A fascinating building unit: Mackay cluster in intermetallics. Struct. Chem. 2017, 28, 133–140. [Google Scholar] [CrossRef]
- Akhmetshina, T.G.; Blatov, V.A.; Proserpio, D.M.; Shevchenko, A.P. Topology of Intermetallic Structures: From Statistics to Rational Design. Acc. Chem. Res. 2018, 51, 21–30. [Google Scholar] [CrossRef]
- Akhmetshina, T.G.; Blatov, V.A. Topological methods for complex intermetallics. Z. Kristallogr. 2017, 232, 497–506. [Google Scholar] [CrossRef]
- Pankova, A.A.; Blatov, V.A.; Ilyushin, G.D.; Proserpio, D.M. γ-Brass Polyhedral Core in Intermetallics: The Nanocluster Model. Inorg. Chem. 2013, 52, 13094–13107. [Google Scholar] [CrossRef]
- Edler, F.J. Untersuchung des ternaren Systems Al-Fe-Pd auf Quasikristalle und ihre Approximanten. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 1997. [Google Scholar]
- Ellner, M.; Kattner, U.; Predel, B. Konstitutionelle und strukturelle untersuchungen im system PdAl. J. Less-Common Met. 1982, 87, 117–133. [Google Scholar] [CrossRef]
- Wang, J.P.; Sun, W.; Liu, Z.Y.; Zhang, Z. Structure analysis of complex alloy phases in as-solidified microstructures of Al-Pd-Fe alloy. Chin. J. Nonferrous Met. 2009, 19, 1587–1593. [Google Scholar]
- Kitaev, Y.E.; Panfilov, A.G.; Tasci, E.S.; Aroyo, M.I. High-symmetry phase prediction using trees of group–supergroup relations. Phys. Solid State 2015, 57, 2297–2304. [Google Scholar] [CrossRef]
- Yaniv, G.; Fuks, D.; Meshi, L. Explanation of structural differences and similarities between the AT2Al10 phases (where A = actinide, lanthanide or rare earth element and T = transition metal). Z. Kristallogr. 2019, 234, 595–603. [Google Scholar] [CrossRef]
- Brandenburg, K.; Putz, H. Diamond; Crystal Impact GbR: Bonn, Germany, 2017. [Google Scholar]
- Grin, Y. The crystal structure of the binary iridium-aluminum IrAl2.75 and rhodium-aluminum RhAl2.63 phase. Z. Kristallogr. 1997, 212, 439–444. [Google Scholar] [CrossRef]
- Liu, C.; Fan, C.Z. Crystal structure of the λ-Al13Fe4-type intermetallic (Al,Cu)13(Fe,Cu)4. IUCrData 2018, 3, x180363. [Google Scholar] [CrossRef]
Region | Image Contrast | x(Al)/% | x(Pd)/% | x(Fe)/% | Possible Phase |
---|---|---|---|---|---|
A | Dark | 100 (± 1.13) | 0 | 0 | Pure Al |
B | Dark grey | 76.29 (± 5.45) | 14.48 (± 2.48) | 9.22 (± 4.02) | |
76.31 (± 5.45) | 14.76 (± 2.66) | 8.93 (± 4.17) | |||
77.09 (± 5.36) | 12.97 (± 2.55) | 9.94 (± 3.73) | |||
76.56 (± 5.43) | 14.39 (± 2.60) | 9.05 (± 4.13) | |||
76.66 (± 5.42) | 14.41 (± 2.46) | 8.94 (± 4.04) | |||
76.6 (±5.4) | 13.0(± 2.6) | 9.2(± 4.0) | C- or C′-phase 1 | ||
C | Bright | 75.60 (± 5.52) | 21.26 (± 2.28) | 3.14(± 10.49) | |
76.02 (± 5.48) | 19.87 (± 2.32) | 4.11 (± 7.53) | |||
75.8 (±5.5) | 20.6 (± 2.3) | 3.6 (± 9.0) | ꜫ-phase 2 or QCs 3 | ||
D | gear-shaped | 77.01 (± 5.40) | 19.26 (± 2.34) | 3.74 (± 8.68) | |
78.43 (± 5.29) | 18.33 (± 2.45) | 3.24 (± 9.03) | |||
76.19 (± 5.48) | 21.07 (± 2.31) | 2.75 (± 11.30) | |||
77.2 (±5.4) | 19.6 (± 2.4) | 3.2 (± 9.7) | QCs 3 or ꜫ-phase 2 | ||
E | Gray stripe | 77.22 (± 5.31) | 3.90 (± 4.62) | 18.88 (± 2.59) | |
77.13 (± 5.32) | 3.81 (± 4.68) | 19.05 (± 2.58) | |||
76.89 (± 5.43) | 4.01 (± 4.01) | 19.10 (± 2.59) | |||
77.1 (±5.4) | 3.9 (± 4.4) | 19.0 (± 2.6) | Fe-rich phase 4 | ||
F | Single crystal | 74.28 (± 5.69) | 12.38 (± 3.03) | 13.34 (± 3.89) | |
74.00 (± 5.72) | 11.84 (± 3.12) | 14.17 (± 3.67) | |||
73.85 (± 5.76) | 12.07 (± 3.30) | 14.08 (± 3.71) | |||
74.0 (±5.7) | 12.1 (± 3.2) | 13.9 (± 3.8) | C′-phase |
Crystal Data | |
---|---|
Chemical Formula | Al5.64 Pd1.04Fe0.96 (Al73.8 Pd13.6Fe12.6) |
Crystal system | Cubic |
Space group | Pm |
a, b, c/Å | 7.6403(2) |
α, β, γ/° | 90 |
V/Å3 | 446.00(4) |
Z | 4 |
Intensity Measurements | |
Radiation | Mo-Kα, λ = 0.71073 (Å) |
μ/mm−1 | 8.231 |
Diffractometer | Bruker D8 Venture Photon 100 CMOS |
Radiation absorption correction | Multi-scan |
Tmin, Tmax | 0.757, 0.870 |
No. measured reflections | 15,873 |
No. unique reflections | 230 |
No. observed reflections (I > 2σ(I)) | 223 |
Rint | 0.0372 |
(sin θ/λ) max (Å−1) | 0.987 |
Refinement of the Structure | |
No. parameters used in refinement | 34 |
No. reflections used in refinement | 223 |
R1 (Fobs > 4σ(Fobs)) | 0.0286 |
R1 (all data) | 0.0300 |
ωR2 (Fobs > 4σ(Fobs)) | 0.0860 |
ωR2 (all data) | 0.0888 |
∆ρmax, ∆ρmin (e Å−3) | 0.847, −0.992 |
Label | Site | x | y | z | Occ. | Ueq,Uiso |
---|---|---|---|---|---|---|
Pd1 | 1b | ½ | ½ | ½ | 1.0000 | 0.0056(5) |
Rh1 | 1b | ½ | ½ | ½ | 1.0000 | 0.007 |
TM2 | 6f | ½ | 0.70685(12) | 0 | 0.526(13) Pd 0.474(13) Fe | 0.0116(4) |
Rh3 | 6h | ½ | 0 | 0.2931(4) | 1.0000 | 0.013 |
Fe1 | 1a | 0 | 0 | 0 | 1.0000 | 0.0054(7) |
Rh2 | 1a | 0 | 0 | 0 | 1.0000 | 0.011 |
Al1 | 12k | ½ | 0.8048(3) | 0.6817(3) | 1.0000 | 0.0111(6) |
Al1 | 12j | 0.2004 | 0.5004 | 0.6773 | 1.0000 | 0.013 |
Al2 | 8i | 0.8154(4) | 0.8154(4) | 0.8154(4) | 0.629(14) | 0.0288(17) |
Al2 | 4e | 0.8243 | 0.8243 | 0.8243 | 1.0000 | 0.017 |
Al3 | 6e | 0.387(3) | 0 | 0 | 0.40(2) | 0.072(7) |
Al3 | 6f | 0 | 0 | 0.3910 | 0.2600 | 0.025 |
Al4 | 12j | 0.705(2) | 0 | 0.878(2) | 0.163(13) | 0.029(6) |
Al4 | 12j | 0.1230 | 0.0160 | 0.3010 | 0.1400 | 0.032 |
Al5 | 12j | 0.723(4) | 0.864(4) | 0 | 0.102(13) | 0.036(10) |
Al5 | 12j | 0.1810 | 0.1330 | 0.2280 | 0.1500 | 0.025 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Fan, C. Structure of Cubic Al73.8Pd13.6Fe12.6 Phase with High Al Content. Crystals 2019, 9, 526. https://doi.org/10.3390/cryst9100526
Li H, Fan C. Structure of Cubic Al73.8Pd13.6Fe12.6 Phase with High Al Content. Crystals. 2019; 9(10):526. https://doi.org/10.3390/cryst9100526
Chicago/Turabian StyleLi, Hao, and Changzeng Fan. 2019. "Structure of Cubic Al73.8Pd13.6Fe12.6 Phase with High Al Content" Crystals 9, no. 10: 526. https://doi.org/10.3390/cryst9100526
APA StyleLi, H., & Fan, C. (2019). Structure of Cubic Al73.8Pd13.6Fe12.6 Phase with High Al Content. Crystals, 9(10), 526. https://doi.org/10.3390/cryst9100526