Recent Advancements in N-polar GaN HEMT Technology
Abstract
1. Introduction
2. Growth of N-polar GaN Epitaxy
2.1. Molecular Beam Epitaxy (MBE) Growth
2.1.1. N-polar GaN on Sapphire by MBE
2.1.2. N-polar GaN on C-Face SiC Using MBE
2.2. Metal–Organic Chemical Vapor Deposition (MOCVD) Growth
2.2.1. General Challenges in MOCVD Growth of N-polar GaN
2.2.2. Growth of N-polar GaN on SiC by MOCVD
2.2.3. Growth of N-polar GaN on Sapphire by MOCVD
2.2.4. Growth of N-polar GaN on Silicon by MOCVD
2.2.5. Growth Uniformity
3. Dielectric and Schottky Barrier Contact Studies on N-polar GaN
3.1. Dielectrics on N-polar GaN
3.2. Schottky Barrier Contacts on N-polar GaN
4. Device Structures and Electrical Performance of N-polar GaN HEMTs
4.1. Planar N-polar GaN HEMTs
4.1.1. MBE-Grown Planar HEMTs
4.1.1.1. MBE-Grown Planar HEMTs with GaN/AlGaN Structure
4.1.1.2. MBE-Grown Planar HEMTs with Non-AlGaN Back Barrier
4.1.2. MOCVD-Grown Planar HEMTs
4.1.2.1. MOCVD-Grown Planar HEMTs with GaN/AlGaN Structure
4.1.2.2. MOCVD-Grown Planar HEMTs with Non-AlGaN Back Barrier
4.2. Fully Self-Aligned N-polar GaN HEMTs
4.2.1. Fully Self-Aligned N-polar GaN HEMTs with GaN/AlGaN Structure
4.2.2. Fully Self-Aligned N-polar GaN HEMTs with Non-AlGaN Back Barrier
4.3. Trench Gate N-polar GaN HEMTs
4.4. Self-Aligned Gate Deep-Recess N-polar GaN HEMTs
4.4.1. Self-Aligned Gate Deep-Recess N-polar GaN HEMTs on SiC Substrates
4.4.2. Self-Aligned Gate Deep-Recess N-polar GaN HEMTs on Sapphire Substrates
4.4.3. Alternative Gate Technologies and Enhancement-Mode Operation
4.4.4. Benchmarking of Performance at W- and D-Bands
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neininger, P.; John, L.; Thome, F.; Friesicke, C.; Bruckner, P.; Quay, R.; Zwick, T. Limitations and Implementation Strategies of Interstage Matching in a 6-W, 28-38-GHz GaN Power Amplifier MMIC. IEEE Trans. Microw. Theory Technol. 2021, 69, 2541–2553. [Google Scholar] [CrossRef]
- Duffy, M.R.; Lasser, G.; Nevett, G.; Roberg, M.; Popovic, Z. A Three-Stage 18.5-24-GHz GaN-on-SiC 4 W 40% Efficient MMIC PA. IEEE J. Solid-State Circuits 2019, 54, 2402–2410. [Google Scholar] [CrossRef]
- Jueschke, P.; Fischer, G. Predistortion of Charge Trapping Memory Effects in GaN based RF Power Amplifiers with Artificial Neural Networks. In Proceedings of the IEEE Radio and Wireless Symposium, RWS, San Antonio, TX, USA, 21–24 January 2024; pp. 58–60. [Google Scholar] [CrossRef]
- Mishra, U.K.; Guidry, M. Lateral GaN Devices for Power Applications (from kHz to GHz). In Power GaN Devices: Materials, Applications and Reliability; Meneghini, M., Meneghesso, G., Zanoni, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 69–99. [Google Scholar] [CrossRef]
- Keller, S.; Li, H.; Laurent, M.; Hu, Y.; Pfaff, N.; Lu, J.; Brown, D.F.; Fichtenbaum, N.A.; Speck, J.S.; DenBaars, S.P.; et al. Recent progress in metal-organic chemical vapor deposition of łeft(000\bar1\right) N-polar group-III nitrides. Semicond. Sci. Technol. 2014, 29, 113001. [Google Scholar] [CrossRef]
- Wong, M.H.; Keller, S.; Nidhi; Dasgupta, S.; Denninghoff, D.J.; Kolluri, S.; Brown, D.F.; Lu, J.; Fichtenbaum, N.A.; Ahmadi, E.; et al. N-polar GaN epitaxy and high electron mobility transistors. Semicond. Sci. Technol. 2013, 28, 074009. [Google Scholar] [CrossRef]
- Romanczyk, B.; Wienecke, S.; Guidry, M.; Li, H.; Ahmadi, E.; Zheng, X.; Keller, S.; Mishra, U.K. Demonstration of Constant 8 W/mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-Polar GaN MISHEMTs. IEEE Trans. Electron Devices 2018, 65, 45–50. [Google Scholar] [CrossRef]
- Romanczyk, B.; Zheng, X.; Guidry, M.; Li, H.; Hatui, N.; Wurm, C.; Krishna, A.; Ahmadi, E.; Keller, S.; Mishra, U.K. W-Band Power Performance of SiN-Passivated N-Polar GaN Deep Recess HEMTs. IEEE Electron Device Lett. 2020, 41, 349–352. [Google Scholar] [CrossRef]
- Adelmann, C.; Brault, J.; Mula, G.; Daudin, B.; Lymperakis, L.; Neugebauer, J. Gallium adsorption on (0001) GaN surfaces. Phys. Rev. B 2003, 67, 165419. [Google Scholar] [CrossRef]
- Neugebauer, J.; Zywietz, T.K.; Scheffler, M.; Northrup, J.E.; Chen, H.; Feenstra, R.M. Adatom Kinetics On and Below the Surface: The Existence of a New Diffusion Channel. Phys. Rev. Lett. 2003, 90, 056101. [Google Scholar] [CrossRef]
- Heying, B.; Averbeck, R.; Chen, L.F.; Haus, E.; Riechert, H.; Speck, J.S. Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy. J. Appl. Phys. 2000, 88, 1855–1860. [Google Scholar] [CrossRef]
- Moustakas, T.D.; Lei, T.; Molnar, R.J. Growth of GaN by ECR-assisted MBE. Phys. B Condens. Matter 1993, 185, 36–49. [Google Scholar] [CrossRef]
- Sobanska, M.; Klosek, K.; Zytkiewicz, Z.R.; Borysiuk, J.; Witkowski, B.S.; Lusakowska, E.; Reszka, A.; Jakiela, R. Plasma-assisted MBE growth of GaN on Si(111) substrates. Cryst. Res. Technol. 2012, 47, 307–312. [Google Scholar] [CrossRef]
- Yang, Z.; Li, L.K.; Wang, W.I. GaN grown by molecular beam epitaxy at high growth rates using ammonia as the nitrogen source. Appl. Phys. Lett. 1995, 67, 1686–1688. [Google Scholar] [CrossRef]
- Einfeldt, S.; Birkle, U.; Thomas, C.; Fehrer, M.; Heinke, H.; Hommel, D. Plasma assisted molecular beam epitaxy growth of GaN. Mater. Sci. Eng. B 1997, 50, 12–15. [Google Scholar] [CrossRef]
- Lee, N.-E.; Powell, R.C.; Kim, Y.-W.; Greene, J.E. Molecular beam epitaxy of GaN(0001) utilizing NH3 and/or NH+x ions: Growth kinetics and defect structure. J. Vac. Sci. Technol. A 1995, 13, 2293–2302. [Google Scholar] [CrossRef]
- Laleyan, D.A.; Fernández-Delgado, N.; Reid, E.T.; Wang, P.; Pandey, A.; Botton, G.A.; Mi, Z. Strain-free ultrathin AlN epilayers grown directly on sapphire by high-temperature molecular beam epitaxy. Appl. Phys. Lett. 2020, 116, 152102. [Google Scholar] [CrossRef]
- Mohanty, S.; Khan, K.; Ahmadi, E. N-polar GaN: Epitaxy, properties, and device applications. Prog. Quantum Electron. 2023, 87, 100450. [Google Scholar] [CrossRef]
- Morkoc, H. Growth and Growth Methods for Nitride Semiconductors. In Handbook of Nitride Semiconductors and Devices; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 323–816. [Google Scholar] [CrossRef]
- Wu, J.; Yang, X.; Song, Y.; Yang, H.; Chen, Z.; Fu, X.; Yang, Z.; Zhang, S.; Shen, B. High mobility p-channel GaN heterostructures grown by MOCVD through impurity engineering. Appl. Phys. Lett. 2024, 125, 252103. [Google Scholar] [CrossRef]
- Hagar, B.G.; Abdelhamid, M.; Routh, E.L.; Colter, P.C.; Bedair, S.M. Ohmic co-doped GaN/InGaN tunneling diode grown by MOCVD. Appl. Phys. Lett. 2022, 121, 052104. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Li, W.; Arehart, A.R.; Ringel, S.A.; Zhao, H. Metalorganic Chemical Vapor Deposition Gallium Nitride with Fast Growth Rate for Vertical Power Device Applications. Phys. Status Solidi (A) 2021, 218, 2000469. [Google Scholar] [CrossRef]
- Borovac, D.; Sun, W.; Song, R.; Wierer, J.J.; Tansu, N. On the thermal stability of nearly lattice-matched AlInN films grown on GaN via MOVPE. J. Cryst. Growth 2020, 533, 125469. [Google Scholar] [CrossRef]
- Jamil, M.; Arif, R.A.; Ee, Y.-K.; Tong, H.; Higgins, J.B.; Tansu, N. MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates. Phys. Status Solidi (A) 2008, 205, 1619–1624. [Google Scholar] [CrossRef]
- Jamil, M.; Zhao, H.; Higgins, J.B.; Tansu, N. MOVPE and photoluminescence of narrow band gap (0.77 eV) InN on GaN/sapphire by pulsed growth mode. Phys. Status Solidi (A) 2008, 205, 2886–2891. [Google Scholar] [CrossRef]
- Hughes, O.H.; Cheng, T.S.; Novikov, S.V.; Foxon, C.T.; Korakakis, D.; Jeffs, N.J. RHEED studies of the GaN surface during growth by molecular beam epitaxy. J. Cryst. Growth 1999, 201–202, 388–391. [Google Scholar] [CrossRef]
- Okumura, H.; Balakrishnan, K.; Hamaguchi, H.; Koizumi, T.; Chichibu, S.; Nakanishi, H.; Nagatomo, T.; Yoshida, S. Analysis of MBE growth mode for GaN epilayers by RHEED. J. Cryst. Growth 1998, 189–190, 364–369. [Google Scholar] [CrossRef]
- Sen, S.; Paul, S.; Singha, C.; Saha, A.; Das, A.; Guha Roy, P.; Pramanik, P.; Bhattacharyya, A. Monitoring the growth of III-nitride materials by plasma assisted molecular beam epitaxy employing diffuse scattering of RHEED. J. Vac. Sci. Technol. B 2019, 38, 014007. [Google Scholar] [CrossRef]
- Ingle, N.J.C.; Yuskauskas, A.; Wicks, R.; Paul, M.; Leung, S. The structural analysis possibilities of reflection high energy electron diffraction. J. Phys. D Appl. Phys. 2010, 43, 133001. [Google Scholar] [CrossRef]
- Smith, A.R.; Feenstra, R.M.; Greve, D.W.; Shin, M.S.; Skowronski, M.; Neugebauer, J.; Northrup, J.E. Reconstructions of GaN(0001) and (0001−) surfaces: Ga-rich metallic structures. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1998, 16, 2242–2249. [Google Scholar] [CrossRef]
- Gherasoiu, I.; Yu, K.M.; Hawkridge, M.; Reichertz, L.A.; Walukiewicz, W. Mg induced compositional change in InGaN alloys. Semicond. Sci. Technol. 2019, 34, 025014. [Google Scholar] [CrossRef]
- Bisi, D.; Romanczyk, B.; Liu, X.; Gupta, G.; Brown-Heft, T.; Birkhahn, R.; Lal, R.; Neufeld, C.J.; Keller, S.; Parikh, P.; et al. Commercially Available N-polar GaN HEMT Epitaxy for RF Applications. In Proceedings of the 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Redondo Beach, CA, USA, 7–11 November 2021; pp. 250–254. [Google Scholar] [CrossRef]
- Mishra, U.; Liu, X.; Birkhahn, R.; Keller, S.; Swenson, B.; McCarthy, L.S.; Blsi, D. Manufacturing of N-polar GaN on Sapphire Epitaxial Wafers for Millimeter-wave Electronics Applications. In Proceedings of the CS ManTech Conf (CS MANTECH), Virtual, 24–27 May 2021. [Google Scholar]
- Mitrovic, B.; Gurary, A.; Quinn, W. Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling. J. Cryst. Growth 2007, 303, 323–329. [Google Scholar] [CrossRef]
- Hirako, A.; Kusakabe, K.; Ohkawa, K. Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2 System: A Computational Fluid Dynamics Simulation Study. Jpn. J. Appl. Phys. 2005, 44, 874. [Google Scholar] [CrossRef]
- Nagamatsu, K.; Tsuda, S.; Miyagawa, T.; Aono, R.; Hirayama, H.; Takashima, Y.; Naoi, Y. Reduction of parasitic reaction in high-temperature AlN growth by jet stream gas flow metal–organic vapor phase epitaxy. Sci. Rep. 2022, 12, 7662. [Google Scholar] [CrossRef]
- Sangiovanni, D.G.; Faccio, R.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface. Phys. Chem. Chem. Phys. 2022, 25, 829–837. [Google Scholar] [CrossRef]
- Northrup, J.E.; Neugebauer, J. Strong affinity of hydrogen for the GaN(000-1) surface: Implications for molecular beam epitaxy and metalorganic chemical vapor deposition. Appl. Phys. Lett. 2004, 85, 3429–3431. [Google Scholar] [CrossRef]
- Monroy, E.; Sarigiannidou, E.; Fossard, F.; Gogneau, N.; Bellet-Amalric, E.; Rouvière, J.-L.; Monnoye, S.; Mank, H.; Daudin, B. Growth kinetics of N-face polarity GaN by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 2004, 84, 3684–3686. [Google Scholar] [CrossRef]
- Cahill, D.G.; Lee, S.-M.; Selinder, T.I. Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings. J. Appl. Phys. 1998, 83, 5783–5786. [Google Scholar] [CrossRef]
- Huang, D.; Visconti, P.; Jones, K.M.; Reshchikov, M.A.; Yun, F.; Baski, A.A.; King, T.; Morkoç, H. Dependence of GaN polarity on the parameters of the buffer layer grown by molecular beam epitaxy. Appl. Phys. Lett. 2001, 78, 4145–4147. [Google Scholar] [CrossRef]
- Dimitrov, R.; Murphy, M.; Smart, J.; Schaff, W.; Shealy, J.R.; Eastman, L.F.; Ambacher, O.; Stutzmann, M. Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire. J. Appl. Phys. 2000, 87, 3375–3380. [Google Scholar] [CrossRef]
- Murphy, M.J.; Chu, K.; Wu, H.; Yeo, W.; Schaff, W.J.; Ambacher, O.; Smart, J.; Shealy, J.R.; Eastman, L.F.; Eustis, T.J. Molecular beam epitaxial growth of normal and inverted two-dimensional electron gases in AlGaN/GaN based heterostructures. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1999, 17, 1252–1254. [Google Scholar] [CrossRef]
- Dimitrov, R.; Mitchell, A.; Wittmer, L.; Ambacher, O.; Stutzmann, M.; Hilsenbeck, J.; Rieger, W. Comparison of N-face and Ga-face AlGaN/GaN-Based High Electron Mobility Transistors Grown by Plasma-Induced Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 1999, 38, 4962. [Google Scholar] [CrossRef]
- Sonoda, S.; Shimizu, S.; Suzuki, Y.; Balakrishnan, K.; Shirakashi, J.; Okumura, H. Characterization of Polarity of Plasma-Assisted Molecular Beam Epitaxial GaN{0001} Film Using Coaxial Impact Collision Ion Scattering Spectroscopy. Jpn. J. Appl. Phys. 2000, 39, L73. [Google Scholar] [CrossRef]
- Pezzagna, S.; Vennéguès, P.; Grandjean, N.; Massies, J. Polarity inversion of GaN(0001) by a high Mg doping. J. Cryst. Growth 2004, 269, 249–256. [Google Scholar] [CrossRef]
- Grandjean, N.; Dussaigne, A.; Pezzagna, S.; Vennéguès, P. Control of the polarity of GaN films using an Mg adsorption layer. J. Cryst. Growth 2003, 251, 460–464. [Google Scholar] [CrossRef]
- Xu, K.; Yano, N.; Jia, A.W.; Yoshikawa, A.; Takahashi, K. Kinetic Process of Polarity Selection in GaN Growth by RF-MBE. Phys. Status Solidi (B) 2001, 228, 523–527. [Google Scholar] [CrossRef]
- Wong, M.H.; Pei, Y.; Chu, R.; Rajan, S.; Swenson, B.L.; Brown, D.F.; Keller, S.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. N-Face Metal–Insulator–Semiconductor High-Electron-Mobility Transistors with AlN Back-Barrier. IEEE Electron Device Lett. 2008, 29, 1101–1104. [Google Scholar] [CrossRef]
- Rajan, S.; Chini, A.; Wong, M.H.; Speck, J.S.; Mishra, U.K. N-polar GaN∕AlGaN∕GaN high electron mobility transistors. J. Appl. Phys. 2007, 102, 044501. [Google Scholar] [CrossRef]
- Ahmadi, E.; Shivaraman, R.; Wu, F.; Wienecke, S.; Kaun, S.W.; Keller, S.; Speck, J.S.; Mishra, U.K. Elimination of columnar microstructure in N-face InAlN, lattice-matched to GaN, grown by plasma-assisted molecular beam epitaxy in the N-rich regime. Appl. Phys. Lett. 2014, 104, 072107. [Google Scholar] [CrossRef]
- Wei, R.; Song, S.; Yang, K.; Cui, Y.; Peng, Y.; Chen, X.; Hu, X.; Xu, X. Thermal conductivity of 4H-SiC single crystals. J. Appl. Phys. 2013, 113, 053503. [Google Scholar] [CrossRef]
- Weyher, J.L.; van Dorp, D.H.; Conard, T.; Nowak, G.; Levchenko, I.; Kelly, J.J. Chemical Etching of GaN in KOH Solution: Role of Surface Polarity and Prior Photoetching. J. Phys. Chem. C 2022, 126, 1115–1124. [Google Scholar] [CrossRef]
- Okumura, H.; McSkimming, B.M.; Huault, T.; Chaix, C.; Speck, J.S. Growth diagram of N-face GaN (0001¯) grown at high rate by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2014, 104, 012111. [Google Scholar] [CrossRef]
- Kaun, S.W.; Wong, M.H.; Mishra, U.K.; Speck, J.S. Molecular beam epitaxy for high-performance Ga-face GaN electron devices. Semicond. Sci. Technol. 2013, 28, 074001. [Google Scholar] [CrossRef]
- Kaun, S.W.; Wong, M.H.; Mishra, U.K.; Speck, J.S. Correlation between threading dislocation density and sheet resistance of AlGaN/AlN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 2012, 100, 262102. [Google Scholar] [CrossRef]
- Ťapajna, M.; Kaun, S.W.; Wong, M.H.; Gao, F.; Palacios, T.; Mishra, U.K.; Speck, J.S.; Kuball, M. Influence of threading dislocation density on early degradation in AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2011, 99, 223501. [Google Scholar] [CrossRef]
- Kaun, S.W.; Wong, M.H.; Dasgupta, S.; Choi, S.; Chung, R.; Mishra, U.K.; Speck, J.S. Effects of Threading Dislocation Density on the Gate Leakage of AlGaN/GaN Heterostructures for High Electron Mobility Transistors. Appl. Phys. Express 2011, 4, 024101. [Google Scholar] [CrossRef]
- Kaun, S.W.; Ahmadi, E.; Mazumder, B.; Wu, F.; Kyle, E.C.H.; Burke, P.G.; Mishra, U.K.; Speck, J.S. GaN-based high-electron-mobility transistor structures with homogeneous lattice-matched InAlN barriers grown by plasma-assisted molecular beam epitaxy. Semicond. Sci. Technol. 2014, 29, 045011. [Google Scholar] [CrossRef]
- Hestroffer, K.; Lund, C.; Koksaldi, O.; Li, H.; Schmidt, G.; Trippel, M.; Veit, P.; Bertram, F.; Lu, N.; Wang, Q.; et al. Compositionally graded InGaN layers grown on vicinal N-face GaN substrates by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 2017, 465, 55–59. [Google Scholar] [CrossRef]
- Ahmadi, E.; Wu, F.; Li, H.; Kaun, S.W.; Tahhan, M.; Hestroffer, K.; Keller, S.; Speck, J.S.; Mishra, U.K. N-face GaN/AlN/GaN/InAlN and GaN/AlN/AlGaN/GaN/InAlN high-electron-mobility transistor structures grown by plasma-assisted molecular beam epitaxy on vicinal substrates. Semicond. Sci. Technol. 2015, 30, 055012. [Google Scholar] [CrossRef]
- Noshin, M.; Wen, X.; Soman, R.; Xu, X.; Chowdhury, S. Growth and mobility characterization of N-polar AlGaN channel high electron mobility transistors. Appl. Phys. Lett. 2023, 123, 062103. [Google Scholar] [CrossRef]
- Soman, R.; Noshin, M.; Chowdhury, S. A study on MOCVD growth window for high quality N-polar GaN for vertical device applications. Semicond. Sci. Technol. 2022, 37, 095003. [Google Scholar] [CrossRef]
- Zywietz, T.; Neugebauer, J.; Scheffler, M. Adatom diffusion at GaN (0001) and (0001−) surfaces. Appl. Phys. Lett. 1998, 73, 487–489. [Google Scholar] [CrossRef]
- Zauner, A.R.A.; Weyher, J.L.; Plomp, M.; Kirilyuk, V.; Grzegory, I.; van Enckevort, W.J.P.; Schermer, J.J.; Hageman, P.R.; Larsen, P.K. Homo-epitaxial GaN growth on exact and misoriented single crystals: Suppression of hillock formation. J. Cryst. Growth 2000, 210, 435–443. [Google Scholar] [CrossRef]
- Keller, S.; Fichtenbaum, N.A.; Wu, F.; Brown, D.; Rosales, A.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition. J. Appl. Phys. 2007, 102, 083546. [Google Scholar] [CrossRef]
- Keller, S.; Parish, G.; Fini, P.T.; Heikman, S.; Chen, C.-H.; Zhang, N.; DenBaars, S.P.; Mishra, U.K.; Wu, Y.-F. Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures. J. Appl. Phys. 1999, 86, 5850–5857. [Google Scholar] [CrossRef]
- Mita, S.; Collazo, R.; Rice, A.; Tweedie, J.; Xie, J.; Dalmau, R.; Sitar, Z. Impact of gallium supersaturation on the growth of N-polar GaN. Phys. Status Solidi C 2011, 8, 2078–2080. [Google Scholar] [CrossRef]
- Wu, P.; Liu, J.; Li, F.; Ren, X.; Tian, A.; Zhou, W.; Zhang, F.; Li, X.; Zhou, B.; Ikeda, M.; et al. Effects of Miscut on Step Instabilities in Homo-Epitaxially Grown GaN. Nanomaterials 2024, 14, 748. [Google Scholar] [CrossRef]
- Kung, P.; Sun, C.J.; Saxler, A.; Ohsato, H.; Razeghi, M. Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates. J. Appl. Phys. 1994, 75, 4515–4519. [Google Scholar] [CrossRef]
- Korotkov, R.Y.; Wessels, B.W. Electrical Properties of Oxygen Doped GaN Grown by Metalorganic Vapor Phase Epitaxy. MRS Internet J. Nitride Semicond. Res. 2000, 5, 301–307. [Google Scholar] [CrossRef]
- Van de Walle, C.G.; Stampfl, C.; Neugebauer, J. Theory of doping and defects in III–V nitrides. J. Cryst. Growth 1998, 189–190, 505–510. [Google Scholar] [CrossRef]
- Fichtenbaum, N.A.; Mates, T.E.; Keller, S.; DenBaars, S.P.; Mishra, U.K. Impurity incorporation in heteroepitaxial N-face and Ga-face GaN films grown by metalorganic chemical vapor deposition. J. Cryst. Growth 2008, 310, 1124–1131. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, J.; Cao, R.; Ha, W.; Zhang, S.; Chen, X.; Yan, J.; Xu, S.; Zhao, Y.; Li, L.; et al. Effect of growth temperature on the impurity incorporation and material properties of N-polar GaN films grown by metal-organic chemical vapor deposition. J. Cryst. Growth 2013, 384, 96–99. [Google Scholar] [CrossRef]
- Wetzel, C. Pressure Induced Deep Gap State of Oxygen in GaN. Phys. Rev. Lett. 1997, 78, 3923–3926. [Google Scholar] [CrossRef]
- Luppi, E.; Degoli, E.; Bertocchi, M.; Ossicini, S.; Véniard, V. Strain-designed strategy to induce and enhance second-harmonic generation in centrosymmetric and noncentrosymmetric materials. Phys. Rev. B 2015, 92, 075204. [Google Scholar] [CrossRef]
- Brown, D.F.; Chu, R.; Keller, S.; DenBaars, S.P.; Mishra, U.K. Electrical properties of N-polar AlGaN/GaN high electron mobility transistors grown on SiC by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2009, 94, 153506. [Google Scholar] [CrossRef]
- Kolluri, S.; Keller, S.; DenBaars, S.P.; Mishra, U.K. Microwave Power Performance N-Polar GaN MISHEMTs Grown by MOCVD on SiC Substrates Using an Al2O3 Etch-Stop Technology. IEEE Electron Device Lett. 2012, 33, 44–46. [Google Scholar] [CrossRef]
- Sun, Q.; Suk Cho, Y.; Kong, B.H.; Koun Cho, H.; Shine Ko, T.; Yerino, C.D.; Lee, I.-H.; Han, J. N-face GaN growth on c-plane sapphire by metalorganic chemical vapor deposition. J. Cryst. Growth 2009, 311, 2948–2952. [Google Scholar] [CrossRef]
- Hellman, E.S. The Polarity of GaN: A Critical Review. MRS Internet J. Nitride Semicond. Res. 1998, 3, 11. [Google Scholar] [CrossRef]
- Sumiya, M.; Ogusu, N.; Yotsuda, Y.; Itoh, M.; Fuke, S.; Nakamura, T.; Mochizuki, S.; Sano, T.; Kamiyama, S.; Amano, H.; et al. Systematic analysis and control of low-temperature GaN buffer layers on sapphire substrates. J. Appl. Phys. 2003, 93, 1311–1319. [Google Scholar] [CrossRef]
- Amano, H. Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation (Nobel Lecture). Ann. Phys. 2015, 527, 327–333. [Google Scholar] [CrossRef]
- Keller, S.; Suh, C.S.; Chen, Z.; Chu, R.; Rajan, S.; Fichtenbaum, N.A.; Furukawa, M.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Properties of N-polar AlGaN/GaN heterostructures and field effect transistors grown by metalorganic chemical vapor deposition. J. Appl. Phys. 2008, 103, 033708. [Google Scholar] [CrossRef]
- Ahmadi, E.; Keller, S.; Mishra, U.K. Model to explain the behavior of 2DEG mobility with respect to charge density in N-polar and Ga-polar AlGaN-GaN heterostructures. J. Appl. Phys. 2016, 120, 115302. [Google Scholar] [CrossRef]
- Kolluri, S.; Keller, S.; DenBaars, S.P.; Mishra, U.K. N-Polar GaN MIS-HEMTs with a 12.1-W/mm Continuous-Wave Output Power Density at 4 GHz on Sapphire Substrate. IEEE Electron Device Lett. 2011, 32, 635–637. [Google Scholar] [CrossRef]
- Qie, H.; Liu, J.; Li, Q.; Sun, Q.; Gao, H.; Sun, X.; Zhou, Y.; Yang, H. Selective area epitaxy of degenerate n-GaN for HEMT ohmic contact by MOCVD. Appl. Phys. Lett. 2022, 121, 212106. [Google Scholar] [CrossRef]
- Hatui, N.; Krishna, A.; Li, H.; Gupta, C.; Romanczyk, B.; Acker-James, D.; Ahmadi, E.; Keller, S.; Mishra, U.K. Ultra-high silicon doped N-polar GaN contact layers grown by metal-organic chemical vapor deposition. Semicond. Sci. Technol. 2020, 35, 095002. [Google Scholar] [CrossRef]
- Keller, S.; Dora, Y.; Wu, F.; Chen, X.; Chowdury, S.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Properties of N-polar GaN films and AlGaN/GaN heterostructures grown on (111) silicon by metal organic chemical vapor deposition. Appl. Phys. Lett. 2010, 97, 142109. [Google Scholar] [CrossRef]
- Keller, S.; Dora, Y.; Chowdhury, S.; Wu, F.; Chen, X.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Growth and characterization of N-polar GaN and AlGaN/GaN HEMTs on (111) silicon. Phys. Status Solidi C 2011, 8, 2086–2088. [Google Scholar] [CrossRef]
- Hu, J.; Hao, Z.; Niu, L.; E, Y.; Wang, L.; Luo, Y. Atomically smooth and homogeneously N-polar AlN film grown on silicon by alumination of Si3N4. Appl. Phys. Lett. 2013, 102, 141913. [Google Scholar] [CrossRef]
- Arias-Purdue, A.; Rowell, P.V.; King, C.M.; Carter, A.D.; Paniagua, A.; Shinohara, K.; Bergman, J.; Urteaga, M.E.; Miller, N.C.; Elliott, M.; et al. N-Polar GaN HEMTs in a High-Uniformity 100-mm Wafer Process with 43.6% Power-Added Efficiency and 2 W/mm at 94 GHz. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 1011–1014. [Google Scholar] [CrossRef]
- Li, W.; Romanczyk, B.; Guidry, M.; Akso, E.; Hatui, N.; Wurm, C.; Liu, W.; Shrestha, P.; Collins, H.; Clymore, C.; et al. Record RF Power Performance at 94 GHz From Millimeter-Wave N-Polar GaN-on-Sapphire Deep-Recess HEMTs. IEEE Trans. Electron Devices 2023, 70, 2075–2080. [Google Scholar] [CrossRef]
- Akso, E.; Clymore, C.; Liu, W.; Collins, H.; Romanczyk, B.; Li, W.; Hatui, N.; Wurm, C.; Keller, S.; Guidry, M.; et al. Record 1 W output power from a single N-Polar GaN MISHEMT at 94 GHz. In Proceedings of the 2023 Device Research Conference (DRC), Santa Barbara, CA, USA, 25–28 June 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Nidhi; Rajan, S.; Keller, S.; Wu, F.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. Study of interface barrier of SiNx/GaN interface for nitrogen-polar GaN based high electron mobility transistors. J. Appl. Phys. 2008, 103, 124508. [Google Scholar] [CrossRef]
- Sayed, I.; Liu, W.; Chan, S.; Gupta, C.; Li, H.; Keller, S.; Mishra, U.K. Flatband voltage stability and time to failure of MOCVD-grown SiO2 and Si3N4 dielectrics on N-polar GaN. Appl. Phys. Express 2019, 12, 121001. [Google Scholar] [CrossRef]
- Sayed, I.; Liu, W.; Chan, S.; Gupta, C.; Guidry, M.; Li, H.; Keller, S.; Mishra, U. Net negative fixed interface charge for Si3N4 and SiO2 grown in situ on 000-1 N-polar GaN. Appl. Phys. Lett. 2019, 115, 032103. [Google Scholar] [CrossRef]
- Clymore, C.J.; Mohanty, S.; Jian, Z.; Krishna, A.; Keller, S.; Ahmadi, E. HfO2 as gate insulator on N-polar GaN–AlGaN heterostructures. Semicond. Sci. Technol. 2021, 36, 035017. [Google Scholar] [CrossRef]
- Mohanty, S.; Sayed, I.; Jian, Z.; Mishra, U.; Ahmadi, E. Investigation and optimization of HfO2 gate dielectric on N-polar GaN: Impact of surface treatments, deposition, and annealing conditions. Appl. Phys. Lett. 2021, 119, 042901. [Google Scholar] [CrossRef]
- Wei, D.; Hossain, T.; Briggs, D.P.; Edgar, J.H. A Comparison of N-Polar (0001) GaN Surface Preparations for the Atomic Layer Deposition of Al2O3. ECS J. Solid State Sci. Technol. 2014, 3, N127. [Google Scholar] [CrossRef]
- Sayed, I.; Bonef, B.; Liu, W.; Chan, S.; Georgieva, J.; Speck, J.S.; Keller, S.; Mishra, U.K. Electrical properties and interface abruptness of AlSiO gate dielectric grown on 0001¯ N-polar and (0001) Ga-polar GaN. Appl. Phys. Lett. 2019, 115, 172104. [Google Scholar] [CrossRef]
- Sayed, I.; Liu, W.; Georgieva, J.; Krishna, A.; Keller, S.; Mishra, U.K. Characterization of AlSiO dielectrics with varying silicon composition for N-polar GaN-based devices. Semicond. Sci. Technol. 2020, 35, 095027. [Google Scholar] [CrossRef]
- Sayed, I.; Liu, W.; Romanczyk, B.; Georgieva, J.; Chan, S.; Keller, S.; Mishra, U.K. Improved operation stability of in situ AlSiO dielectric grown on (000–1) N-polar GaN by MOCVD. Appl. Phys. Express 2020, 13, 061010. [Google Scholar] [CrossRef]
- Downey, B.P.; Meyer, D.J.; Katzer, D.S.; Storm, D.F.; Binari, S.C. Electrical characterization of Schottky contacts to N-polar GaN. Solid-State Electron. 2013, 86, 17–21. [Google Scholar] [CrossRef]
- Liu, W.; Sayed, I.; Romanczyk, B.; Hatui, N.; Guidry, M.; Mitchell, W.J.; Keller, S.; Mishra, U.K. Ru/N-Polar GaN Schottky Diode with Less Than 2 μA/cm2 Reverse Current. IEEE Electron Device Lett. 2020, 41, 1468–1471. [Google Scholar] [CrossRef]
- Xu, N.; Deng, G.; Ma, H.; Yang, S.; Niu, Y.; Yu, J.; Wang, Y.; Zhao, J.; Zhang, Y. Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes. J. Semicond. 2024, 45, 042501. [Google Scholar] [CrossRef]
- Nidhi; Dasgupta, S.; Pei, Y.; Swenson, B.L.; Brown, D.F.; Keller, S.; Speck, J.S.; Mishra, U.K. fT and f\rm MAX of 47 and 81 GHz, Respectively, on N-Polar GaN/AlN MIS-HEMT. IEEE Electron Device Lett. 2009, 30, 599–601. [Google Scholar] [CrossRef]
- Pasayat, S.S.; Ahmadi, E.; Romanczyk, B.; Koksaldi, O.; Agarwal, A.; Guidry, M.; Gupta, C.; Wurm, C.; Keller, S.; Mishra, U.K. First demonstration of RF N-polar GaN MIS-HEMTs grown on bulk GaN using PAMBE. Semicond. Sci. Technol. 2019, 34, 045009. [Google Scholar] [CrossRef]
- Soman, R.; Malakoutian, M.; Kim, J.; Akso, E.; Hatui, N.; Wurm, C.; Mishra, U.; Chowdhury, S. Integration of 150 nm gate length N-polar GaN MIS-HEMT devices with all-around diamond for device-level cooling. Appl. Phys. Express 2025, 18, 046503. [Google Scholar] [CrossRef]
- Rajan, S.; Wong, M.; Fu, Y.; Wu, F.; Speck, J.S.; Mishra, U.K. Growth and Electrical Characterization of N-face AlGaN/GaN Heterostructures. Jpn. J. Appl. Phys. 2005, 44, L1478. [Google Scholar] [CrossRef]
- Denninghoff, D.J.; Dasgupta, S.; Lu, J.; Keller, S.; Mishra, U.K. Design of High-Aspect-Ratio T-Gates on N-Polar GaN/AlGaN MIS-HEMTs for High f\max. IEEE Electron Device Lett. 2012, 33, 785–787. [Google Scholar] [CrossRef]
- Nidhi; Dasgupta, S.; Pei, Y.; Swenson, B.L.; Keller, S.; Speck, J.S.; Mishra, U.K. N-Polar GaN/AlN MIS-HEMT for Ka-Band Power Applications. IEEE Electron Device Lett. 2010, 31, 1437–1439. [Google Scholar] [CrossRef]
- Kolluri, S.; Pei, Y.; Keller, S.; Denbaars, S.P.; Mishra, U.K. RF Performance of N-Polar AlGaN/GaN MIS-HEMTs Grown by MOCVD on Sapphire Substrate. IEEE Electron Device Lett. 2009, 30, 584–586. [Google Scholar] [CrossRef]
- Zheng, X.; Guidry, M.; Li, H.; Ahmadi, E.; Hestroffer, K.; Romanczyk, B.; Wienecke, S.; Keller, S.; Mishra, U.K. N-Polar GaN MIS-HEMTs on Sapphire with High Combination of Power Gain Cutoff Frequency and Three-Terminal Breakdown Voltage. IEEE Electron Device Lett. 2016, 37, 77–80. [Google Scholar] [CrossRef]
- Zheng, X.; Li, H.; Ahmadi, E.; Hestroffer, K.; Guidry, M.; Romanczyk, B.; Wienecke, S.; Keller, S.; Mishra, U.K. High frequency N-polar GaN planar MIS-HEMTs on sapphire with high breakdown and low dispersion. In Proceedings of the 2016 Lester Eastman Conference (LEC), Bethlehem, PA, USA, 2–4 August 2016; pp. 42–45. [Google Scholar] [CrossRef]
- Arias, A.; Rowell, P.; Bergman, J.; Urteaga, M.; Shinohara, K.; Zheng, X.; Li, H.; Romanczyk, B.; Guidry, M.; Wienecke, S.; et al. High performance N-polar GaN HEMTs with OIP3/Pdc ∼12dB at 10GHz. In Proceedings of the 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Miami, FL, USA, 22–25 October 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Brown, D.F.; Nidhi; Wu, F.; Keller, S.; DenBaars, S.P.; Mishra, U.K. N-Polar InAlN/AlN/GaN MIS-HEMTs. IEEE Electron Device Lett. 2010, 31, 800–802. [Google Scholar] [CrossRef]
- Denninghoff, D.; Lu, J.; Laurent, M.; Ahmadi, E.; Keller, S.; Mishra, U.K. N-polar GaN/InAlN MIS-HEMT with 400-GHz ƒmax. In Proceedings of the 70th Device Research Conference, State College, PA, USA, 18–20 June 2012; pp. 151–152. [Google Scholar] [CrossRef]
- Denninghoff, D.; Lu, J.; Ahmadi, E.; Keller, S.; Mishra, U.K. N-polar GaN/InAlN/AlGaN MIS-HEMTs with 1.89 S/mm extrinsic transconductance, 4 A/mm drain current, 204 GHz fT and 405 GHz fmax. In Proceedings of the 71st Device Research Conference, Notre Dame, IN, USA, 23–26 June 2013; pp. 197–198. [Google Scholar] [CrossRef]
- Lu, J.; Zheng, X.; Guidry, M.; Denninghoff, D.; Ahmadi, E.; Lal, S.; Keller, S.; DenBaars, S.P.; Mishra, U.K. Engineering the (In, Al, Ga)N back-barrier to achieve high channel-conductivity for extremely scaled channel-thicknesses in N-polar GaN high-electron-mobility-transistors. Appl. Phys. Lett. 2014, 104, 092107. [Google Scholar] [CrossRef]
- Hamwey, R.; Hatui, N.; Akso, E.; Wu, F.; Clymore, C.; Keller, S.; Speck, J.S.; Mishra, U.K. First Demonstration of an N-Polar InAlGaN/GaN HEMT. IEEE Electron Device Lett. 2024, 45, 328–331. [Google Scholar] [CrossRef]
- Nidhi; Dasgupta, S.; Brown, D.F.; Keller, S.; Speck, J.S.; Mishra, U.K. N-polar GaN-based highly scaled self-aligned MIS-HEMTs with state-of-the-art fT.LG product of 16.8 GHz-µm. In Proceedings of the 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–3. [Google Scholar] [CrossRef]
- Dasgupta, S.; Nidhi; Brown, D.F.; Wu, F.; Keller, S.; Speck, J.S.; Mishra, U.K. Ultralow nonalloyed Ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth. Appl. Phys. Lett. 2010, 96, 143504. [Google Scholar] [CrossRef]
- Nidhi; Dasgupta, S.; Brown, D.F.; Singisetti, U.; Keller, S.; Speck, J.S.; Mishra, U.K. Self-Aligned Technology for N-Polar GaN/Al(Ga)N MIS-HEMTs. IEEE Electron Device Lett. 2011, 32, 33–35. [Google Scholar] [CrossRef]
- Nidhi; Dasgupta, S.; Brown, D.F.; Speck, J.S.; Mishra, U.K. Scaling behavior and velocity enhancement in self-aligned N-polar GaN/AlGaN HEMTs with maximum fT of 163 GHz. In Proceedings of the 69th Device Research Conference, Santa Barbara, CA, USA, 20–22 June 2011; pp. 141–142. [Google Scholar] [CrossRef]
- Nidhi; Dasgupta, S.; Brown, D.F.; Keller, S.; Speck, J.S.; Mishra, U.K. T-gate technology for N-polar GaN-based self-aligned MIS-HEMTs with state-of-the-art fMAX of 127 GHz: Pathway towards scaling to 30nm GaN HEMTs. In Proceedings of the 68th Device Research Conference, Notre Dame, IN, USA, 21–23 June 2010; pp. 155–156. [Google Scholar] [CrossRef]
- Wang, B.; Khan, K.; Akso, E.; Collins, H.; Chavan, T.; Guidry, M.; Mishra, U. Self-aligned Scaled Planar N-polar GaN HEMTs with Raised Regrowth. In Proceedings of the 2024 Device Research Conference (DRC), College Park, MD, USA, 24–26 June 2024; pp. 1–2. [Google Scholar] [CrossRef]
- Nidhi; Dasgupta, S.; Lu, J.; Speck, J.S.; Mishra, U.K. Scaled Self-Aligned N-Polar GaN/AlGaN MIS-HEMTs with fT of 275 GHz. IEEE Electron Device Lett. 2012, 33, 961–963. [Google Scholar] [CrossRef]
- Nidhi; Dasgupta, S.; Lu, J.; Speck, J.S.; Mishra, U.K. Self-Aligned N-Polar GaN/InAlN MIS-HEMTs with Record Extrinsic Transconductance of 1105 mS/mm. IEEE Electron Device Lett. 2012, 33, 794–796. [Google Scholar] [CrossRef]
- Wong, M.H.; Rajan, S.; Chu, R.M.; Palacios, T.; Suh, C.S.; McCarthy, L.S.; Keller, S.; Speck, J.S.; Mishra, U.K. N-face high electron mobility transistors with a GaN-spacer. Phys. Status Solidi (A) 2007, 204, 2049–2053. [Google Scholar] [CrossRef]
- Wong, M.H.; Pei, Y.; Speck, J.S.; Mishra, U.K. High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation. Appl. Phys. Lett. 2009, 94, 182103. [Google Scholar] [CrossRef]
- Wong, M.H.; Pei, Y.; Brown, D.F.; Keller, S.; Speck, J.S.; Mishra, U.K. High-Performance N-Face GaN Microwave MIS-HEMTs with > 70% Power-Added Efficiency. IEEE Electron Device Lett. 2009, 30, 802–804. [Google Scholar] [CrossRef]
- Zheng, X.; Li, H.; Guidry, M.; Romanczyk, B.; Ahmadi, E.; Hestroffer, K.; Wienecke, S.; Keller, S.; Mishra, U.K. Analysis of MOCVD SiNx Passivated N-Polar GaN MIS-HEMTs on Sapphire with High f_max\cdot V_DS,Q. IEEE Electron Device Lett. 2018, 39, 409–412. [Google Scholar] [CrossRef]
- Bisi, D.; De Santi, C.; Meneghini, M.; Wienecke, S.; Guidry, M.; Li, H.; Ahmadi, E.; Keller, S.; Mishra, U.K.; Meneghesso, G.; et al. Observation of Hot Electron and Impact Ionization in N-Polar GaN MIS-HEMTs. IEEE Electron Device Lett. 2018, 39, 1007–1010. [Google Scholar] [CrossRef]
- Prasertsuk, K.; Suemitsu, T.; Matsuoka, T. Reverse bias annealing effects in N-polar GaN/AlGaN metal-insulator-semiconductor high electron mobility transistors. Jpn. J. Appl. Phys. 2021, 61, SA1006. [Google Scholar] [CrossRef]
- Romanczyk, B. Record 34.2% Efficient mm-Wave N-Polar AlGaN/GaN MISHEMT at 87 GHz|Request PDF. Available online: https://www.researchgate.net/publication/307920761_Record_342_efficient_mm-wave_N-polar_AlGaNGaN_MISHEMT_at_87_GHz (accessed on 14 September 2025).
- Romanczyk, B.; Guidry, M.; Wienecke, S.; Li, H.; Ahmadi, E.; Zheng, X.; Keller, S.; Mishra, U.K. W-band N-polar GaN MISHEMTs with high power and record 27.8% efficiency at 94 GHz. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 3.5.1–3.5.4. [Google Scholar] [CrossRef]
- Liu, W.; Romanczyk, B.; Guidry, M.; Hatui, N.; Wurm, C.; Li, W.; Shrestha, P.; Zheng, X.; Keller, S.; Mishra, U.K. 6.2 W/Mm and Record 33.8% PAE at 94 GHz From N-Polar GaN Deep Recess MIS-HEMTs with ALD Ru Gates. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 748–751. [Google Scholar] [CrossRef]
- Akso, E.; Collins, H.; Clymore, C.; Li, W.; Guidry, M.; Romanczyk, B.; Wurm, C.; Liu, W.; Hatui, N.; Hamwey, R.; et al. First Demonstration of Four-Finger N-polar GaN HEMT Exhibiting Record 712-mW Output Power with 31.7% PAE at 94 GHz. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 683–686. [Google Scholar] [CrossRef]
- Clymore, C.J.; Akso, E.; Guidry, M.; Collins, H.; Liu, W.; Wurm, C.; Hatui, N.; Mishra, U.K. First Comparison of Active and Passive Load Pull at W-Band. In Proceedings of the 2023 101st ARFTG Microwave Measurement Conference (ARFTG), San Diego, CA, USA, 16 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Collins, H.; Akso, E.; Hatui, N.; Clymore, C.J.; Wurm, C.; Hamwey, R.; Guidry, M.; Keller, S.; Mishra, U.K. N-Polar GaN MISHEMT with Bias-Insensitive Linearity at 30 GHz. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 287–290. [Google Scholar] [CrossRef]
- Shrestha, P.; Guidry, M.; Romanczyk, B.; Karnaty, R.R.; Hatui, N.; Wurm, C.; Krishna, A.; Pasayat, S.S.; Keller, S.; Buckwalter, J.F.; et al. A Novel Concept using Derivative Superposition at the Device-Level to Reduce Linearity Sensitivity to Bias in N-polar GaN MISHEMT. In Proceedings of the 2020 Device Research Conference (DRC), Columbus, OH, USA, 21–24 June 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Romanczyk, B.; Wienecke, S.; Guidry, M.; Li, H.; Hestroffer, K.; Ahmadi, E.; Zheng, X.; Keller, S.; Mishra, U.K. mm-Wave N-polar GaN MISHEMT with a self-aligned recessed gate exhibiting record 4.2 W/mm at 94 GHz on Sapphire. In Proceedings of the 2016 74th Annual Device Research Conference (DRC), Newark, DE, USA, 19–22 June 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Romanczyk, B.; Li, W.; Guidry, M.; Hatui, N.; Krishna, A.; Wurm, C.; Keller, S.; Mishra, U.K. N-Polar GaN-on-Sapphire Deep Recess HEMTs with High W-Band Power Density. IEEE Electron Device Lett. 2020, 41, 1633–1636. [Google Scholar] [CrossRef]
- Li, W.; Romanczyk, B.; Akso, E.; Guidry, M.; Hatui, N.; Wurm, C.; Liu, W.; Shrestha, P.; Collins, H.; Clymore, C.; et al. Record 94 GHz performance from N-polar GaN-on-Sapphire MIS-HEMTs: 5.8 W/mm and 38.5% PAE. In Proceedings of the 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 11.2.1–11.2.4. [Google Scholar] [CrossRef]
- Akso, E.; Li, W.; Clymore, C.; O’Malley, E.; Guidry, M.; Kim, J.; Romanczyk, B.; Collins, H.; Wang, B.; Wurm, C.; et al. Record D-Band Performance From Prematched N-Polar GaN-on-Sapphire Transistor with 2 W/mm and 10.6% PAE at 132 GHz. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 395–398. [Google Scholar] [CrossRef]
- Akso, E.; Collins, H.; Khan, K.; Wang, B.; Li, W.; Clymore, C.; Kayede, E.; Liu, W.; Chavan, T.; Hamwey, R.; et al. Schottky Barrier Gate N-Polar GaN-on-Sapphire Deep Recess HEMT with Record 10.5 dB Linear Gain and 50.2% PAE at 94 GHz. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 183–186. [Google Scholar] [CrossRef]
- Collins, H.; Akso, E.; Clymore, C.J.; Khan, K.; Hamwey, R.; Hatui, N.; Guidry, M.; Keller, S.; Mishra, U.K. N-Polar Deep Recess GaN HEMT with a TiN Schottky Gate Contact Demonstrating 53.4% PAE and 3.7 W/mm Associated Pout at 94 GHz. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 907–910. [Google Scholar] [CrossRef]
- Collins, H.; Akso, E.; Clymore, C.J.; Khan, K.; Hamwey, R.; Hatui, N.; Guidry, M.; Keller, S.; Mishra, U.K. N-polar deep-recess GaN MISHEMT with enhanced ft·LG by gate dielectric thinning. Electron. Lett. 2024, 60, e13272. [Google Scholar] [CrossRef]
- Odabasi, O.; Mohanty, S.; Khan, K.; Ahmadi, E. N-Polar GaN Deep Recess HEMT with Atomic Layer Deposition HfO2 as Gate Insulator. IEEE Trans. Electron Devices 2023, 70, 4572–4577. [Google Scholar] [CrossRef]
- Odabasi, O.; Khan, M.I.; Zhai, X.; Rana, H.; Ahmadi, E. Enhancement Mode N-polar Deep Recess GaN HEMT with Record Small Signal Performance. IEEE Electron Device Lett. 2025, 46, 1505–1508. [Google Scholar] [CrossRef]
- Marti, D.; Tirelli, S.; Teppati, V.; Lugani, L.; Carlin, J.-F.; Malinverni, M.; Grandjean, N.; Bolognesi, C.R. 94-GHz Large-Signal Operation of AlInN/GaN High-Electron-Mobility Transistors on Silicon with Regrown Ohmic Contacts. IEEE Electron Device Lett. 2015, 36, 17–19. [Google Scholar] [CrossRef]
- Harrouche, K.; Kabouche, R.; Okada, E.; Medjdoub, F. High Performance and Highly Robust AlN/GaN HEMTs for Millimeter-Wave Operation. IEEE J. Electron Devices Soc. 2019, 7, 1145–1150. [Google Scholar] [CrossRef]
- Chumbes, E.M.; Logan, J.; Schultz, B.; DeJarld, M.; Tahhan, M.; Kolias, N.; Hardy, M.; Ancona, M.; Meyer, D. ScAlN-GaN Transistor Technology for Millimeter-wave Ultra-high Power and Efficient MMICs. In Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium—IMS 2022, Denver, CO, USA, 19–24 June 2022; pp. 295–297. [Google Scholar] [CrossRef]
- Hickman, A.; Chaudhuri, R.; Li, L.; Nomoto, K.; Moser, N.; Elliott, M.; Guidry, M.; Shinohara, K.; Hwang, J.C.M.; Xing, H.G.; et al. 2.2 W/mm at 94 GHz in AlN/GaN/AlN High-Electron-Mobility Transistors on SiC. Phys. Status Solidi (A) 2023, 220, 2200774. [Google Scholar] [CrossRef]
- Moon, J.-S.; Grabar, B.; Wong, J.; Dao, C.; Arkun, E.; Tai, H.; Fanning, D.; Miller, N.C.; Elliott, M.; Gilbert, R.; et al. W-Band Graded-Channel GaN HEMTs with Record 45% Power-Added-Efficiency at 94 GHz. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 161–164. [Google Scholar] [CrossRef]
- Yoshida, S.; Tanomura, M.; Murase, Y.; Yamanoguchi, K.; Ota, K.; Matsunaga, K.; Shimawaki, H. A 76 GHz GaN-on-silicon power amplifier for automotive radar systems. In Proceedings of the 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 7–12 June 2009; pp. 665–668. [Google Scholar] [CrossRef]
- Micovic, M.; Kurdoghlian, A.; Shinohara, K.; Burnham, S.; Milosavljevic, I.; Hu, M.; Corrion, A.; Fung, A.; Lin, R.; Samoska, L.; et al. W-Band GaN MMIC with 842 mW output power at 88 GHz. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 237–239. [Google Scholar] [CrossRef]
- Brown, A.; Brown, K.; Chen, J.; Hwang, K.C.; Kolias, N.; Scott, R. W-band GaN power amplifier MMICs. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Brown, D.F.; Williams, A.; Shinohara, K.; Kurdoghlian, A.; Milosavljevic, I.; Hashimoto, P.; Grabar, R.; Burnham, S.; Butler, C.; Willadsen, P.; et al. W-band power performance of AlGaN/GaN DHFETs with regrown n+ GaN ohmic contacts by MBE. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 19.3.1–19.3.4. [Google Scholar] [CrossRef]
- Brown, A.; Brown, K.; Chen, J.; Gritters, D.; Hwang, K.C.; Ko, E.; Kolias, N.; O’Connor, S.; Sotelo, M. High power, high efficiency E-band GaN amplifier MMICs. In Proceedings of the 2012 IEEE International Conference on Wireless Information Technology and Systems (ICWITS), Maui, HI, USA, 11–16 November 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Margomenos, A.; Kurdoghlian, A.; Micovic, M.; Shinohara, K.; Brown, D.F.; Bowen, R.; Milosavljevic, I.; Grabar, R.; Butler, C.; Schmitz, A.; et al. 70–105 GHz wideband GaN power amplifiers. In Proceedings of the 2012 7th European Microwave Integrated Circuit Conference, Amsterdam, The Netherlands, 29–30 October 2012; pp. 199–202. Available online: https://ieeexplore.ieee.org/abstract/document/6483770 (accessed on 28 August 2025).
- Micovic, M.; Kurdoghlian, A.; Margomenos, A.; Brown, D.F.; Shinohara, K.; Burnham, S.; Milosavljevic, I.; Bowen, R.; Williams, A.J.; Hashimoto, P.; et al. 92–96 GHz GaN power amplifiers. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar] [CrossRef]
- Margomenos, A.; Kurdoghlian, A.; Micovic, M.; Shinohara, K.; Brown, D.F.; Corrion, A.L.; Moyer, H.P.; Burnham, S.; Regan, D.C.; Grabar, R.M.; et al. GaN Technology for E, W and G-Band Applications. In Proceedings of the 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 19–22 October 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Schellenberg, J.M. A 2-W W-Band GaN Traveling-Wave Amplifier with 25-GHz Bandwidth. IEEE Trans. Microw. Theory Technol. 2015, 63, 2833–2840. [Google Scholar] [CrossRef]
- Niida, Y.; Kamada, Y.; Ohki, T.; Ozaki, S.; Makiyama, K.; Minoura, Y.; Okamoto, N.; Sato, M.; Joshin, K.; Watanabe, K. 3.6 W/mm high power density W-band InAlGaN/GaN HEMT MMIC power amplifier. In Proceedings of the 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), Austin, TX, USA, 24–27 January 2016; pp. 24–26. [Google Scholar] [CrossRef]
- Shaobing, W.; Fangjin, G.; Jianfeng, G.; Weibo, W.; Zhonghui, L.; Nianning, H.; Tangsheng, C. W-band AlGaN/GaN MMIC PA with 3.1W output power. In Proceedings of the 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China, 1–3 November 2017; pp. 219–223. [Google Scholar] [CrossRef]
- Ture, E.; Brückner, P.; Alsharef, M.; Granzner, R.; Schwierz, F.; Quay, R.; Ambacher, O. First demonstration of W-band Tri-gate GaN-HEMT power amplifier MMIC with 30 dBm output power. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 35–37. [Google Scholar] [CrossRef]
- Ćwikliński, M.; Friesicke, C.; Brückner, P.; Schwantuschke, D.; Wagner, S.; Lozar, R.; Maßler, H.; Quay, R.; Ambacher, O. Full W-Band GaN Power Amplifier MMICs Using a Novel Type of Broadband Radial Stub. IEEE Trans. Microw. Theory Technol. 2018, 66, 5664–5675. [Google Scholar] [CrossRef]
- Schwantuschke, D.; Godejohann, B.-J.; Brückner, P.; Tessmann, A.; Quay, R. mm-Wave operation of AlN/GaN-devices and MMICs at V- & W-band. In Proceedings of the 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, Poland, 14–17 May 2018; pp. 238–241. [Google Scholar] [CrossRef]
- Wang, W.; Guo, F.; Chen, T.; Wang, K. 24.8 A W-Band Power Amplifier with Distributed Common-Source GaN HEMT and 4-Way Wilkinson-Lange Combiner Achieving 6W Output Power and 18% PAE at 95GHz. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 16–20 February 2020; pp. 376–378. [Google Scholar] [CrossRef]
- Ge, Q.; Dou, B.; Liu, J.; Yao, X. A GaN HEMT Based MMIC Power Amplifier Covering 75–130 GHz. In Proceedings of the 2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Chengdu, China, 13–15 November 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Li, H.; Xie, Q.; Lu, Z.; Xie, H.; Zhuang, Y.; Liu, S.; Wang, Y.; Wang, Y.; Ranjan, K.; Gong, X.; et al. GaN-on-Si HEMT for D-Band Power Amplification Demonstrating 0.67 W/mm at 10 V. IEEE Electron Device Lett. 2025, 1. [Google Scholar] [CrossRef]
- Fung, A.; Samoska, L.; Kangaslahti, P.; Lin, R.; Mehdi, I.; Sadowy, G.; Tanelli, S.; Esteban-Fernandez, D.; Peralta, A.; Soria, M.; et al. Gallium nitride amplifiers beyond W-band. In Proceedings of the 2018 IEEE Radio and Wireless Symposium (RWS), Anaheim, CA, USA, 15–18 January 2018; pp. 150–153. [Google Scholar] [CrossRef]
- Ćwikliński, M.; Brückner, P.; Leone, S.; Friesicke, C.; Maßler, H.; Lozar, R.; Wagner, S.; Quay, R.; Ambacher, O. D-Band and G-Band High-Performance GaN Power Amplifier MMICs. IEEE Trans. Microw. Theory Technol. 2019, 67, 5080–5089. [Google Scholar] [CrossRef]
- Lam, E.; Arias-Purdue, A.; O’Malley, E.; Buckwalter, J.F. A 23.5-dBm, 7.9%-PAE Pseudo-differential Power Amplifier at 136 GHz in 40-nm GaN. In Proceedings of the 2022 17th European Microwave Integrated Circuits Conference (EuMIC), Milan, Italy, 26–27 September 2022; pp. 119–122. [Google Scholar] [CrossRef]
- O’Malley, E.; Arias-Purdue, A.; Guidry, M.; Buckwalter, J. Gallium Nitride HEMTs for Power Amplifiers above 100 GHz. In Proceedings of the 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, USA, 27–28 April 2022; pp. 1–4. [Google Scholar] [CrossRef]
- O’Malley, E.; Buckwalter, J.F. Coupled Embedding Networks for 7-dB Gain-per-Stage at 130–140 GHz in a 20-dBm Gallium Nitride Power Amplifier. IEEE J. Microw. 2022, 2, 669–677. [Google Scholar] [CrossRef]
- Schwantuschke, D.; Ture, E.; Brückner, P.; Neininger, P.; Tessmann, A.; Zink, M.; Kuri, M.; Meder, D.; Wagner, S.; Lozar, R. GaN-based Power Amplifier MMIC and Module for D-Band Applications. In Proceedings of the 2023 18th European Microwave Integrated Circuits Conference (EuMIC), Berlin, Germany, 18–19 September 2023; pp. 129–132. [Google Scholar] [CrossRef]
- Ćwikliński, M.; Riedmann, N.; Ziegler, R.; Vossiek, M.; Brückner, P.; Schwantuschke, D.; Mikulla, M. Full D-Band GaN Power Amplifier MMIC and Waveguide Module. In Proceedings of the 2024 19th European Microwave Integrated Circuits Conference (EuMIC), Paris, France, 23–24 September 2024; pp. 50–53. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Wu, W.; Fay, P.; Hwang, J.C.M. A D-Band 24-dBm MMIC Amplifier by Innovative Power Combining of GaN HEMTs in a SiC SIW. IEEE Trans. Microw. Theory Technol. 2025, 73, 4929–4936. [Google Scholar] [CrossRef]
Ref. | Orientation | Year | Substrate | DUT Type | Frequency (GHz) | VDS,Q (V) | POUT,SAT (W/mm) | POUT,SAT (mW) | PAESAT (%) | PAEPEAK (%) |
---|---|---|---|---|---|---|---|---|---|---|
[7] | N-polar | 2018 | SiC | HEMT | 94 | 20 | 7.94 | 595.5 | 26.9 | 27.9 |
[8] | N-polar | 2020 | SiC | HEMT | 94 | 23 | 8.84 | 663 | 27 | - |
[93] | N-polar | 2023 | SiC | HEMT | 94 | 20 | 6.66 | 999 | 21.4 | ~25 |
[92] | N-polar | 2023 | Sapphire | HEMT | 94 | 12 | 4.85 | 242.5 | 40.2 | 40.2 |
[147] | N-polar | 2024 | Sapphire | HEMT | 94 | 12 | 3.7 | 185 | 53.4 | 53.4 |
[151] | Ga-polar | 2015 | Si | HEMT | 94 | 9 | 1.35 | 135 | ~2 | 12 |
[152] | Ga-polar | 2019 | SiC | HEMT | 94 | 20 | 4 | 200 | >12.5 | 14.3 |
[153] | Ga-polar | 2022 | SiC | HEMT | 94 | 10 | 3.6 | - | 24.3 | 24.3 |
[154] | Ga-polar | 2023 | SiC | HEMT | 94 | 12 | 2.2 | 110 | 13 | 15 |
[155] | Ga-polar | 2023 | SiC | Prematched | 94 | 14 | 2.1 | 315 | 45 | 45 |
[156] | Ga-polar | 2009 | Si | MMIC | 76 | 8 | 0.13 | 25 | - | - |
[157] | Ga-polar | 2010 | SiC | MMIC | 88 | 14 | 1.4 | 842 | 14.8 | 15 |
[158] | Ga-polar | 2011 | SiC | MMIC | 91 | 20 | - | 1700 | 11 | 11 |
[159] | Ga-polar | 2011 | - | MMIC | 95 | 14 | 1.7 | 1024 | 19.1 | 19.1 |
[160] | Ga-polar | 2012 | SiC | MMIC | 84 | 20 | 2.8 | 2000 | - | 15.3 |
[161] | Ga-polar | 2012 | SiC | MMIC | 90 | 12 | - | 282 | 13.2 | 13.2 |
[162] | Ga-polar | 2012 | SiC | MMIC | 93.5 | 14 | 1.78 | 2138 | 19 | - |
[163] | Ga-polar | 2014 | SiC | MMIC | 83 | 12 | 1.71 | 1370 | 27 | - |
[164] | Ga-polar | 2015 | SiC | MMIC | 84 | 13 | - | 3000 | 12.1 | 12.1 |
[165] | Ga-polar | 2016 | SiC | MMIC | 86 | 20 | 3.6 | 1150 | - | 12.3 |
[166] | Ga-polar | 2017 | SiC | MMIC | 91 | 15 | 3.23 | 3100 | >12.5 | ~15 |
[167] | Ga-polar | 2017 | SiC | MMIC | 90 | 15 | 1.03 | 1150 | 8 | 8 |
[168] | Ga-polar | 2018 | SiC | MMIC | 80 | 15 | 2.6 | 724 | 8.6 | 8.6 |
[169] | Ga-polar | 2018 | SiC | MMIC | 90 | 15 | 1 | 600 | - | 6.7 |
[170] | Ga-polar | 2020 | - | MMIC | 95 | 18 | - | 6025 | - | 18.3 |
[171] | Ga-polar | 2023 | SiC | MMIC | 86 | - | 2.35 | 282 | 14.5 | - |
Ref. | Orientation | Year | Substrate | DUT Type | Frequency (GHz) | VDS,Q (V) | POUT,SAT (W/mm) | POUT,SAT (mW) | PAESAT (%) | PAEPEAK (%) |
---|---|---|---|---|---|---|---|---|---|---|
[145] | N-polar | 2024 | Sapphire | Prematched | 132 | 12 | 2 | 100 | 10.6 | - |
[172] | Ga-polar | 2025 | Si | HEMT | 123 | 10 | 0.67 | 21 | 1.3 | ~3 |
[173] | Ga-polar | 2018 | SiC | MMIC | 147 | 10 | 0.66 | 66 | 1.7 | 1.7 |
[174] | Ga-polar | 2019 | SiC | MMIC | 120 | 15 | 1.4 | 440 | 11.5 | 11.5 |
[175] | Ga-polar | 2022 | SiC | MMIC | 136 | 12 | 0.75 | 223.9 | - | 7.9 |
[176] | Ga-polar | 2022 | - | MMIC | 140 | 6 | 0.26 | 38.9 | - | 9.1 |
[177] | Ga-polar | 2022 | SiC | MMIC | 133 | - | 0.65 | 97.7 | 6.5 | 6.5 |
[178] | Ga-polar | 2023 | SiC | MMIC | 140 | 10 | 1.7 | 204 | 11.2 | 11.2 |
[179] | Ga-polar | 2024 | - | MMIC | 160 | 10 | 0.92 | 182 | 2.8 | - |
[180] | Ga-polar | 2025 | SiC | MMIC | 145 | 12 | - | 251 | 9 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akso, E.; Khan, K.; Collins, H.; Wang, B.; Hamwey, R.; Chavan, T.; Clymore, C.; Li, W.; Odabasi, O.; Guidry, M.; et al. Recent Advancements in N-polar GaN HEMT Technology. Crystals 2025, 15, 830. https://doi.org/10.3390/cryst15090830
Akso E, Khan K, Collins H, Wang B, Hamwey R, Chavan T, Clymore C, Li W, Odabasi O, Guidry M, et al. Recent Advancements in N-polar GaN HEMT Technology. Crystals. 2025; 15(9):830. https://doi.org/10.3390/cryst15090830
Chicago/Turabian StyleAkso, Emre, Kamruzzaman Khan, Henry Collins, Boyu Wang, Robert Hamwey, Tanmay Chavan, Christopher Clymore, Weiyi Li, Oguz Odabasi, Matthew Guidry, and et al. 2025. "Recent Advancements in N-polar GaN HEMT Technology" Crystals 15, no. 9: 830. https://doi.org/10.3390/cryst15090830
APA StyleAkso, E., Khan, K., Collins, H., Wang, B., Hamwey, R., Chavan, T., Clymore, C., Li, W., Odabasi, O., Guidry, M., Keller, S., Ahmadi, E., DenBaars, S. P., & Mishra, U. (2025). Recent Advancements in N-polar GaN HEMT Technology. Crystals, 15(9), 830. https://doi.org/10.3390/cryst15090830