Fabrication and Characterization of Ce-Doped LiCaAlF6–CaF2–Li3AlF6 and CaF2–LiF–Li3AlF6 Scintillators for Thermal Neutron Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Eutectic Growth
2.2. Phase Identification
2.3. Scintillator Performance
3. Results and Discussion
3.1. Eutectic Growth
3.2. Phase Identification
3.3. Scintillation Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ihédate. World Nuclear Industry Status Report 2024. Available online: https://www.worldnuclearreport.org/World-Nuclear-Industry-Status-Report-2024-1046 (accessed on 2 August 2025).
- International Atomic Energy Agency. Global Status of Decommissioning of Nuclear Installations; International Atomic Energy Agency: Vienna, Austria, 2023; pp. 1–125. [Google Scholar]
- Fukushima Research and Engineering Institute, Japan Atomic Energy Agency. Available online: https://fukushima.jaea.go.jp/en/ (accessed on 2 August 2025).
- Decontamination Projects for Radioactive Contamination Discharged by Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station Accident. Available online: https://josen.env.go.jp/en/policy_document/pdf/decontamination_report1807_01.pdf (accessed on 20 August 2025).
- Riyana, E.S.; Okumura, K.; Terashima, K. Calculation of Gamma and Neutron Emission Characteristics Emitted from Fuel Debris of Fukushima Daiichi Nuclear Power Station. J. Nucl. Sci. Technol. 2019, 56, 922–931. [Google Scholar] [CrossRef]
- Kamada, S.; Nishimura, K. Integration of Multiple Sensors into an ROV for Remote Measurement in the Fukushima Daiichi Nuclear Power Station. J. Robot. Mechatron. 2024, 36, 71–78. [Google Scholar] [CrossRef]
- Oda, K.; Kaneko, J.H.; Kobayakawa, Y.; Watanabe, K.; Fujita, Y.; Hamada, E.; Kishishita, T.; Miyahara, M.; Shoji, M.; Uchinoyae, H.; et al. Reduction of γ-Ray-Induced Noise of Diamond Detector Elements and Estimation of Neutron Detection Efficiency for the Development of a Criticality Proximity Monitoring System for the Decommissioning of the Fukushima Daiichi Nuclear Power Plant. Sens. Mater. 2025, 37, 1977. [Google Scholar] [CrossRef]
- Okada, S.; Kobayashi, R.; Ueno, K. Development of Advanced Measurement Technologies and Their Application to Decommissioning of Fukushima Daiichi Nuclear Power Station. Available online: https://www.hitachihyoron.com/rev/archive/2022/r2022_04/04c03/index.html (accessed on 20 August 2025).
- Bondar, L. Passive Neutron Assay. In Nuclear Safeguards Technology 1982; International Atomic Energy Agency: Vienna, Austria, 1983; pp. 137–146. [Google Scholar]
- Kouzes, R.T.; Ely, J.H.; Erikson, L.E.; Kernan, W.J.; Lintereur, A.T.; Siciliano, E.R.; Stephens, D.L.; Stromswold, D.C.; Van Ginhoven, R.M.; Woodring, M.L. Neutron detection alternatives to 3He for national security applications. Nucl. Instrum. Methods Phys. Res. Sect. A 2010, 623, 1035–1045. [Google Scholar] [CrossRef]
- The 3He Supply Problem. Available online: https://www.pnnl.gov/publications/3he-supply-problem (accessed on 25 August 2025).
- Beddingfield, D.H.; Johnson, N.H.; Menlove, H.O. 3He neutron proportional counter performance in high gamma-ray dose environments. Nucl. Instrum. Methods Phys. Res. Sect. A 2000, 455, 670–682. [Google Scholar] [CrossRef]
- Seeger, P.A. Neutron detection systems for small-angle scattering. J. Appl. Cryst. 1988, 21, 613–617. [Google Scholar] [CrossRef]
- Neutron/γ-Ray Discrimination Based on the Property and Thickness Controls of Scintillators Using Li Glass and LiCAF (Ce) in a γ-Ray Field|Request PDF. Available online: https://www.researchgate.net/publication/364681565_Neutron_g_-ray_discrimination_based_on_the_property_and_thickness_controls_of_scintillators_using_Li_glass_and_LiCAF_Ce_in_a_g_-ray_field (accessed on 2 August 2025).
- Gektin, A.; Shiran, N.; Neicheva, S.; Gavrilyuk, V.; Bensalah, A.; Fukuda, T.; Shimamura, K. LiCaAlF6:Ce Crystal: A new scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 2002, 486, 274–277. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Yanagida, T.; Yokota, Y.; Kawaguchi, N.; Ishizu, S.; Fukuda, K.; Suyama, T.; Kim, K.J.; Pejchal, J.; Nikl, M.; et al. Single crystal growth, optical properties and neutron response of Ce3+ doped LiCaAlFg. IEEE Trans. Nucl. Sci. 2009, 56, 3796–3799. [Google Scholar] [CrossRef]
- Watanabe, K.; Kondo, Y.; Yamazaki, A.; Uritani, A.; Iguchi, T.; Kawaguchi, N.; Fukuda, K.; Suyama, T.; Yanagida, T.; Fujimoto, Y.; et al. Neutron-Gamma Discrimination in a Ce:LiCaAlF6 Scintillator Based on Pulse Shape Discrimination Using Digital Signal Processing. In Proceedings of the 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Valencia, Spain, 23–29 October 2011; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2011; pp. 436–439. [Google Scholar]
- Kaburagi, M.; Kamada, K.; Ishii, J.; Matsumoto, T.; Manabe, S.; Masuda, A.; Harano, H.; Kato, M.; Shimazoe, K. Performance study of a new LiCAF:Ce detector developed for high-efficient neutron detection in intense γ-ray fields. J. Inst. 2024, 19, P11019. [Google Scholar] [CrossRef]
- Sasaki, R.; Kamada, K.; Yoshino, M.; Jin Kim, K.; Murakami, R.; Horiai, T.; Yamaji, A.; Kurosawa, S.; Yokota, Y.; Sato, H.; et al. Investigation of the phase diagram of the CsI-LiBr system and fabrication of the eutectic scintillator for thermal neutron detection. J. Cryst. Growth 2024, 628, 127543. [Google Scholar] [CrossRef]
- Takizawa, Y.; Kamada, K.; Yoshino, M.; Kim, K.J.; Yamaji, A.; Kurosawa, S.; Yokota, Y.; Sato, H.; Toyoda, S.; Ohashi, Y.; et al. Growth and scintillation properties of Ce doped 6 LiBr/LaBr3 eutectic scintillator for neutron detection. Nucl. Instrum. Methods Phys. Res. Sect. A 2022, 1028, 166384. [Google Scholar] [CrossRef]
- Sasaki, R.; Kamada, K.; Kim, K.J.; Yajima, R.; Yoshino, M.; Kutsuzawa, N.; Murakami, R.; Horiai, T.; Yoshikawa, A. Fabrication of CeCl3/LiCl/CaCl2 ternary eutectic scintillator for thermal neutron detection. Crystals 2022, 12, 1760. [Google Scholar] [CrossRef]
- Chen, H.B.; Fan, S.; Xia, H.; Fei, Y. Phase equilibria in the pseudo-binary systems LiF–CaAlF5 and LiF–SrAlF5. J. Cryst. Growth 2002, 235, 596–602. [Google Scholar] [CrossRef]
- The WaveCatcher Family of SCA-Based 12-Bit 3.2-GS/s Fast Digitizers|Request PDF. Available online: https://www.researchgate.net/publication/281356750_The_WaveCatcher_family_of_SCA-based_12-bit_32-GSs_fast_digitizers (accessed on 2 August 2025).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Roake, W.E. The Systems CaF2 - LiF and CaF2 - LiF - MgF2. J. Electrochem. Soc. 1957, 104, 661. [Google Scholar] [CrossRef]
- Kamada, K.; Hishinuma, K.; Kurosawa, S.; Shoji, Y.; Pejchal, J.; Ohashi, Y.; Yokota, Y.; Yoshikawa, A. Directionally Solidified Eu Doped CaF2/Li3AlF6 Eutectic Scintillator for Neutron Detection. Opt. Mater. 2015, 50, 71–75. [Google Scholar] [CrossRef]
- Fedotieff, P.P.; Timofeeff, K. Schmelzdiagramme Der Systeme KF - AlF3 und LiF - AlF3. Z. Für Anorg. Allg. Chem. 1932, 206, 263–266. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Watanabe, K.; Fukuda, K.; Kawaguchi, N.; Miyamoto, Y.; Nanto, H. Scintillation and optical stimulated luminescence of Ce-Doped CaF2. Radiat. Meas. 2014, 71, 162–165. [Google Scholar] [CrossRef]
- Yanagida, T.; Kim, K.J.; Kamada, K.; Yokota, Y.; Maeo, S.; Yoshikawa, A.; Kawaguchi, N.; Fukuda, K.; Sarukura, N.; Chani, V. Growth, optical properties, and scintillation light yield of CaF2:Ce crystals with different Ce concentration. Jpn. J. Appl. Phys. 2010, 49, 032601. [Google Scholar] [CrossRef]
neff (Ce:LiCAF = 1) | Light Yield (ph/n) | Decay Time (ns) | Density (g/cm3) | Hygroscopicity | |
---|---|---|---|---|---|
Ce: LiCAF single crystal | 1 | 5000 | n: 46 (100%) γ: 49 (100%) | 2.98 | No |
Ce: (LiCAF)0.4(CaF2)0.17(Li3AlF6)0.43 (x = 1) | 1.9 | 1806 | n: 61 (28%), 304 (72%) γ: 76 (100%) | 2.92 | No |
Ce: (CaF2)0.35(LiF)0.35(Li3AlF6)0.3 (x = 3) | 5.6 | 3944 | n: 103 (20%), 650 (80%) γ: 165 (100%) | 2.89 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuyama, T.; Kamada, K.; Murugesan, N.; Yoshino, M.; Murakami, R.; Yamaji, A.; Sato, H.; Kim, K.-J.; Ishizawa, S.; Kurosawa, S.; et al. Fabrication and Characterization of Ce-Doped LiCaAlF6–CaF2–Li3AlF6 and CaF2–LiF–Li3AlF6 Scintillators for Thermal Neutron Detection. Crystals 2025, 15, 761. https://doi.org/10.3390/cryst15090761
Matsuyama T, Kamada K, Murugesan N, Yoshino M, Murakami R, Yamaji A, Sato H, Kim K-J, Ishizawa S, Kurosawa S, et al. Fabrication and Characterization of Ce-Doped LiCaAlF6–CaF2–Li3AlF6 and CaF2–LiF–Li3AlF6 Scintillators for Thermal Neutron Detection. Crystals. 2025; 15(9):761. https://doi.org/10.3390/cryst15090761
Chicago/Turabian StyleMatsuyama, Tomoaki, Kei Kamada, Naveenkarthik Murugesan, Masao Yoshino, Rikito Murakami, Akihito Yamaji, Hiroki Sato, Kyoung-Jin Kim, Satoshi Ishizawa, Shunsuke Kurosawa, and et al. 2025. "Fabrication and Characterization of Ce-Doped LiCaAlF6–CaF2–Li3AlF6 and CaF2–LiF–Li3AlF6 Scintillators for Thermal Neutron Detection" Crystals 15, no. 9: 761. https://doi.org/10.3390/cryst15090761
APA StyleMatsuyama, T., Kamada, K., Murugesan, N., Yoshino, M., Murakami, R., Yamaji, A., Sato, H., Kim, K.-J., Ishizawa, S., Kurosawa, S., Hanada, T., Yokota, Y., & Yoshikawa, A. (2025). Fabrication and Characterization of Ce-Doped LiCaAlF6–CaF2–Li3AlF6 and CaF2–LiF–Li3AlF6 Scintillators for Thermal Neutron Detection. Crystals, 15(9), 761. https://doi.org/10.3390/cryst15090761