Manganese-Rich Chromite in Myanmar Jadeite Jade: A Critical Source of Chromium and Manganese and Its Role in Coloration
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection and Preparation of Samples
2.2. Methods
3. Results
3.1. Petrographic Observation
3.2. Micro-XRF Mapping
3.3. Mineral Compositions
4. Discussion
4.1. Characteristics of Manganese-Rich Chromite, a Supplier of Color-Causing Elements in Jadeitite
4.2. Transfer and Diffusion of Chromium and Manganese During Metasomatic Replacement
4.3. Changes in Mn from Chromite to Clinopyroxene
4.4. Effects of Cr and Mn on the Color of Jadeite: Comparison of Data from the Literature
Color | 55Mn | 53Cr | 57Fe | 47Ti | Sources |
---|---|---|---|---|---|
green * | 400 | 1300 | 22,500 | 0 | This study (F1-1-5-1) |
green * | 210 | 1650 | 32,440 | 40 | This study (F1-1-120) |
green (avg) ** | 111 | 689 | 4222 | 114 | Lu, 2012 [19] |
green * | 100–300 | 500–1500 | 2300–8000 | 0–500 | Zhang, 2008 [48] |
lavender (Myanmar) ** | 269 | 0 | 210 | 0 | Lu, 2012 [19] |
lavender (Myanmar) | 125–991 | 2.71–3.95 | 298–2875 | 2.23–14.7 | Li, 2012 [47] |
lavender (avg) | 126 | 0.45 | 346 | 76 | Han et al., 2020 [21] |
lavender (Myanmar) | 336–372 | 2–4 | 1929–2854 | 16–56 | Wu et al., 2019 [20] |
bluish (Japan) ** | 27 | 0 | 2795 | 1388 | Lu, 2012 [19] |
bluish (Guatemala) ** | 2.7 | 0 | 201 | 843 | Lu, 2012 [19] |
blue-violet (Myanmar) | 26.6–189 | 2.98–3.06 | 1255–1601 | 469–1056 | Li, 2012 [47] |
blue-violet (avg) | 15 | 0.7 | 1176 | 688 | Han et al., 2020 [21] |
blue-violet (Myanmar) | 30–69 | 5–11 | 1262–1375 | 2747–2910 | Wu et al., 2019 [20] |
white (Myanmar) | 15.6–17.2 | 2.83–3.33 | 144–221 | 3.80–6.92 | Li, 2012 [47] |
white (Myanmar) | 48–64 | 3–31 | 955–1571 | 206–650 | Wu et al., 2019 [20] |
4.5. The “Spring Color with Green” Variety Further Supports the Conclusion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, G.H.; Wang, X.; Chu, B.B.; Cui, W.Y. Jadeite jade from Myanmar: Its texture and gemmological implications. J. Gems Gemol. 2009, 31, 185–195. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, G.H. Origin of Blue-Water Jadeite Jades from Myanmar and Guatemala: Differentiation by Non-Destructive Spectroscopic Techniques. Crystals 2022, 12, 1448. [Google Scholar] [CrossRef]
- GB/T 16553–2017; Gems-Testing. Standards Press of China: Beijing, China, 2017; pp. 50–51.
- Zhao, L.; Ma, H.; Fang, C.; Ding, L.; Jia, X. Synthesis and characterization of purple NaAlSi2O6 jadeite under high pressure and high temperature. J. Cryst. Growth 2018, 499, 30–34. [Google Scholar] [CrossRef]
- Harder, H. Trace elements as colouring agents in jadeites. J. Gemmol. 1995, 24, 508–511. [Google Scholar] [CrossRef]
- Rossman, G. Lavender jade. The optical spectrum of Fe3+ and Fe2+→ Fe3+ intervalence charge transfer in jadeite from Burma. Am. Mineral. J. Earth Planet. Mater. 1974, 59, 868–870. [Google Scholar]
- Hughes, R.W.; Galibert, O.; Bosshart, G.; Ward, F.; Oo, T.; Smith, M.; Sun, T.; Harlow, G.E. Burmese jade: The inscrutable gem. Gems Gemol. 2000, 36, 2–26. [Google Scholar] [CrossRef]
- Shi, G.H.; Stöckhert, B.; Cui, W.Y. Kosmochlor and chromian jadeite aggregates from the Myanmar jadeitite area. Mineral. Mag. 2005, 69, 1059–1075. [Google Scholar] [CrossRef]
- Shi, G.H.; Tropper, P.; Cui, W.Y.; Tan, J.; Wang, C. Methane (CH4)-bearing fluid inclusions in the Myanmar jadeitite. Geochem. J. 2005, 39, 503–516. [Google Scholar] [CrossRef]
- Khomenko, V.; Platonov, A. Electronic absorption-spectra of Cr3+ ions in natural clinopyroxenes. Phys. Chem. Miner. 1985, 11, 261–265. [Google Scholar] [CrossRef]
- Harlow, G.E.; Olds, E. Observations on terrestrial ureyite and ureyitic pyroxene. Am. Mineral. 1987, 72, 126–136. [Google Scholar]
- Zhang, Y.; Shi, G.; Wen, J. Chromite and Its Thin Kosmochlor and Cr-Omphacite Cortex in Amphibolite from the Myanmar Jadeite Deposits. Crystals 2025, 15, 79. [Google Scholar] [CrossRef]
- Shi, G.H.; Cui, W.Y. Desalinization of chromium within Myanmar jadeite jade and implications. J. Gems Gemmol. 2005, 7, 7–12, (In Chinese with English abstract). [Google Scholar]
- Curtiss, B.; Frederick, W.L. Visible and near-infrared spectroscopy for jade artifact analysis. In Precolumbian Jade: New Geological and Cultural Interpretations; University of Utah Press: Salt Lake City, UT, USA, 1993; pp. 73–81. ISBN 9780874803938/0874803934. [Google Scholar]
- Webster, R. Gems; Butterworths: London, UK, 1970. [Google Scholar]
- Ouyang, Q.M.; Qi, L.J. Hte long sein—A new variety of chrome jadeite jade. J. Gemmol. 2001, 27, 321–327. [Google Scholar] [CrossRef]
- Chen, B.H.; Qiu, Z.L.; Zhang, X.Y. Preliminary study on mineralogical characteristics of purple jadeites. Gem Gemol. J. 1999, 1, 35–39. [Google Scholar]
- Shinno, I.; Oba, T. Absorption and photo-luminescence spectra of Ti3+ and Fe3+ in jadeites. Mineral. J. 1993, 16, 378–386. [Google Scholar] [CrossRef]
- Lu, R. Color origin of lavender jadeite: An alternative approach. Gems Gemol. 2012, 48, 273–283. [Google Scholar] [CrossRef]
- Wu, X.; Bao, Z.Y.; Kang, Y.; Han, X.Z.; Liu, X.L.; Qu, M.Y. Color origin of burmese lavender jadeite. Laser Optoelectron. Prog. 2019, 56, 287–291, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Han, W.; Liu, Y.; Zhang, J.; Lu, T.J. Color origins of two types of natural lavender jadeite jades. Acta Mineral. Sin. 2020, 40, 549–555, (In Chinese with English abstract). [Google Scholar]
- Harlow, G.E.; Shi, G.H. An LA-ICP-MS study of lavender jadeite from Myanmar, Guatemala, and Japan. Gems Gemol. 2011, 47, 116–117. [Google Scholar]
- Hatipoglu, M.; Basevirgen, Y.; Chamberlain, S.C. Gem-quality Turkish purple jade: Geological and mineralogical characteristics. J. Afr. Earth Sci. 2012, 63, 48–61. [Google Scholar] [CrossRef]
- Shi, G.; Harlow, G.E.; Wang, J.; Wang, J.; Enoch, N.G.; Wang, X.; Cao, S.M.; Enyuancui, W. Mineralogy of jadeitite and related rocks from Myanmar: A review with new data. Eur. J. Mineral. 2012, 24, 345–370. [Google Scholar] [CrossRef]
- Liu, C.Z.; Zhang, C.; Xu, Y.; Wang, J.G.; Chen, Y.; Guo, S.; Wu, F.Y.; Sein, K. Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings. Lithos 2016, 264, 495–508. [Google Scholar] [CrossRef]
- Qi, L.J.; Zheng, S.; Pei, J.C. Mechanism for kosmochlor symplectite and compositional variation zoning in jadeite jade. Gems Gemol. 1999, 1, 13–17. [Google Scholar]
- Liang, F. Studies of Gemological Characteristics and Petrology Characteristics of Green Albite Jade. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2014. [Google Scholar]
- Ouyang, Q.M. A terrestrial source of ureyite. Am. Mineral. 1984, 69, 1180–1183. [Google Scholar]
- Tsujimori, T.; Liou, J.G. Low-pressure and low-temperature K-bearing kosmochloric diopside from the Osayama serpentinite melange, SW Japan. Am. Mineral. 2005, 90, 1629–1635. [Google Scholar] [CrossRef]
- Lenaz, D.; Skogby, H.; Princivalle, F.; Hålenius, U. Structural changes and valence states in the MgCr2O4-FeCr2O4 solid solution series. Phys. Chem. Miner. 2004, 31, 633–642. [Google Scholar] [CrossRef]
- Biagioni, C.; Pasero, M. The systematics of the spinel-type minerals: An overview. Am. Mineral. 2014, 99, 1254–1264. [Google Scholar] [CrossRef]
- Barnes, S.J. Chromite in komatiites, II. modification during greenschist to mid-amphibolite facies metamorphism. J. Petrol. 2000, 41, 387–409. [Google Scholar] [CrossRef]
- Dutta, B.; Pal, D. Absorption and Raman Spectroscopy: Ferrimagnet Spinel MnCr2O4. In Proceedings of the 63rd DAE Solid State Physics Symposium (DAE-SSPS), Guru Jambheshwar Univ Sci & Technol, Hisar, India, 18–22 December 2019. [Google Scholar]
- Wang, S. Behavior of Chromium Spinel (MgxMn1-x)Cr2O4 Under High Temperature and High Pressure and Its Raman Spectroscopy. Master’s Thesis, Peking University, Beijing, China, 2013. [Google Scholar]
- Gahlan, H.; Arai, S.; Ahmed, A.H.; Ishida, Y.; Abdel-Aziz, Y.M.; Rahimi, A. Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: An implication for mobility of iron during serpentinisation. J. Afr. Earth Sci. 2006, 46, 318–330. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Arai, S. Genesis of peculiarly zoned Co, Zn and Mn-rich chromian spinel in serpentinite of Bou-Azzer ophiolite, Anti-Atlas, Morocco. J. Mineral. Petrol. Sci. 2007, 12, 69–85. [Google Scholar] [CrossRef]
- Colás, V.; González-Jiménez, J.M.; Griffin, W.L.; Fanlo, I.; Gervilla, F.; O’Reilly, S.Y.; Pearson, N.J.; Kerestedjian, T.; Proenza, J.A. Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chem. Geol. 2014, 389, 137–152. [Google Scholar] [CrossRef]
- Shi, G.H.; Cui, W.Y.; Tropper, P.; Wang, C.Q.; Shu, G.-M.; Yu, H. The petrology of a complex sodic and sodic-calcic amphibole association and its implications for the metasomatic processes in the jadeitite area in northwestern Myanmar, formerly Burma. Contrib. Mineral. Petrol. 2003, 145, 355–376. [Google Scholar] [CrossRef]
- Shi, G.H.; Jiang, N.; Liu, Y.; Wang, X.; Zhang, Z.Y.; Xu, Y.J. Zircon Hf isotope signature of the depleted mantle in the Myanmar jadeitite: Implications for Mesozoic intra-oceanic subduction between the Eastern Indian Plate and the Burmese Platelet. Lithos 2009, 112, 342–350. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, F.; Shi, G.H.; Wu, F.Y.; Chen, X.; Jin, Q.Z.; Su, B.; Guo, S.; Sein, K.; Nyunt, T.T. Magnesium Isotope Composition of Subduction Zone Fluids as Constrained by Jadeitites from Myanmar. J. Geophys. Res. Solid Earth 2018, 123, 7566–7585. [Google Scholar] [CrossRef]
- Mével, C.; Kienast, J.R. Jadeite-kosmochlor solid solution and chromian sodic amphiboles in jadeitites and associated rocks from Tawmaw (Burma). Bull. Minéralogie 1986, 109, 617–633. [Google Scholar] [CrossRef]
- Prewitt, C.; Burnham, C.W. The crystal structure of jadeite, NaAlSi2O6. Am. Mineral. J. Earth Planet. Mater. 1966, 51, 956–975. [Google Scholar]
- Cameron, M.; Sueno, S.; Prewitt, C.T.; Papike, J. High-temperature crystal chemistry of acmite, diopside, hedenbergite jadeite, spodumene and ureyite. Am. Mineral. J. Earth Planet. Mater. 1973, 58, 594–618. [Google Scholar]
- Ghose, S.; Kersten, M.; Langer, K.; Rossi, G.; Ungaretti, L. Crystal field spectra and Jahn Teller effect of Mn3+ in clinopyroxene and clinoamphiboles from India. Phys. Chem. Miner. 1986, 13, 291–305. [Google Scholar] [CrossRef]
- Miessler, G.L.; Tarr, D.A. Inorganic Chemistry, 4th ed.; Pearson: London, UK, 2012; pp. 362–439. ISBN 7-111-37067-3. [Google Scholar]
- Burns, R.G. Measurements of absorption spectra of minerals. In Mineralogical Applications of Crystal Field Theory; Cambridge Topics in Mineral Physics and Chemistry; Cambridge University Press: Cambridge, UK, 1993; pp. 87–145. [Google Scholar]
- Li, X. The Color Causing Mechanism and Influencing Factors of Lavender Feicui in Myanmar. Master’s Thesis, China University of Geosciences, Beijing, China, 2012. [Google Scholar]
- Zhang, X. Jade Color Changes to the Color and Type and Content-Relations. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2008. [Google Scholar]
- Shi, G.H.; Jiang, N.; Wang, Y.W.; Zhao, X.; Wang, X.; Li, G.W.; Ng, E.; Cui, W.Y. Ba minerals in clinopyroxene rocks from the Myanmar jadeitite area: Implications for Ba recycling in subduction zones. Eur. J. Mineral. 2010, 22, 199–214. [Google Scholar] [CrossRef]
- Harlow, G.E.; Sisson, V.B.; Sorensen, S.S. Jadeitite from Guatemala: New observations and distinctions among multiple occurrences. Geol. Acta 2011, 9, 363. [Google Scholar]
- Harlow, G.E. Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala. J. Metamorph. Geol. 1994, 12, 49–68. [Google Scholar] [CrossRef]
CN | Ion | Ionic Radius (nm) | Spin State |
---|---|---|---|
4 | Si4+ | 0.026 | |
Fe2+ | 0.063 | ||
Mg2+ | 0.057 | ||
Mn2+ | 0.066 | ||
Al3+ | 0.039 | ||
Fe3+ | 0.049 | ||
8 | Na+ | 0.118 | |
6 | Al3+ | 0.054 | |
Cr3+ | 0.062 | ||
Fe2+ | 0.078 | HS | |
Fe3+ | 0.0645 | HS | |
Mn3+ | 0.0645 | HS | |
Mn2+ | 0.083 | HS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shi, G.; Wen, J. Manganese-Rich Chromite in Myanmar Jadeite Jade: A Critical Source of Chromium and Manganese and Its Role in Coloration. Crystals 2025, 15, 704. https://doi.org/10.3390/cryst15080704
Zhang Y, Shi G, Wen J. Manganese-Rich Chromite in Myanmar Jadeite Jade: A Critical Source of Chromium and Manganese and Its Role in Coloration. Crystals. 2025; 15(8):704. https://doi.org/10.3390/cryst15080704
Chicago/Turabian StyleZhang, Yu, Guanghai Shi, and Jiabao Wen. 2025. "Manganese-Rich Chromite in Myanmar Jadeite Jade: A Critical Source of Chromium and Manganese and Its Role in Coloration" Crystals 15, no. 8: 704. https://doi.org/10.3390/cryst15080704
APA StyleZhang, Y., Shi, G., & Wen, J. (2025). Manganese-Rich Chromite in Myanmar Jadeite Jade: A Critical Source of Chromium and Manganese and Its Role in Coloration. Crystals, 15(8), 704. https://doi.org/10.3390/cryst15080704