First-Principles Investigation of Diverse Properties of X2CaTa2O7 (X = Li, Na, K, and Rb) Ruddlesden–Popper Compounds for Photovoltaic Applications
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. Structural Properties
3.2. Electronic Properties
3.2.1. Band Structures
3.2.2. Total Density of States (TDOS)
3.2.3. Partial Density of States (PDOS)
- ➢
- Li2CaTa2O7
- ➢
- Na2CaTa2O7
- ➢
- K2CaTa2O7
- ➢
- Rb2CaTa2O7
3.3. Optical Properties
3.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wojtkiewicz, J.; Iwan, A.; Pilch, M.; Boharewicz, B.; Wójcik, K.; Tazbir, I.; Kaminska, M. Towards designing polymers for photovoltaic applications: A DFT and experimental study of polyazomethines with various chemical structures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 181, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Even, J.; Pedesseau, L.; Tea, E.; Almosni, S.; Rolland, A.; Robert, C.; Jancu, J.-M.; Cornet, C.; Katan, C.; Guillemoles, J.-F.; et al. Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures. Int. J. Photoenergy 2014, 2014, 649408. [Google Scholar] [CrossRef]
- Jabeen, N.; Hussain, A.; Rahman, A.U.; Faiza, I.; El-Bahy, S.M. Novel, diverse and ultra-high ferroelectric, piezoelectric and dielectric performances of Mn added La2Ti2O7-based ceramics for high-temperature applications. Solid State Ion. 2024, 414, 116637. [Google Scholar] [CrossRef]
- Rajeshwar, K.; Osugi, M.E.; Chanmanee, W.; Chenthamarakshan, C.R.; Zanoni, M.V.B.; Kajitvichyanukul, P.; Krishnan-Ayer, R. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 171–192. [Google Scholar] [CrossRef]
- Kainat, F.; Jabeen, N.; Yaqoob, A.; Hassan, N.U.; Hussain, A.; Khalifa, M.E. Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof. Crystals 2024, 14, 710. [Google Scholar] [CrossRef]
- Hussain, A.; Jabeen, N.; Rahman, A.U.; Qaiser, M.A.; Tariq, Z.; Abd El-Gawad, H.H. Experimental and theoretical study of Gd2O3 added pseudo-tetragonal Bi3TaTiO9-based ceramics for ferroelectric, electric and high-temperature piezoelectric applications. Ceram. Int. 2024, 50, 18177–18184. [Google Scholar] [CrossRef]
- Koc, H.; Palaz, S.; Ugur, G.; Mamedov, A.M.; Ozbay, E. Electronic, mechanical, and optical properties of Ruddlesden-Popper perovskite sulfides: First principle calculation. Ferroelectrics 2018, 535, 142–151. [Google Scholar] [CrossRef]
- Hussain, A.; Kainat, F.; Jabeen, N.; Yaqoob, A.; Abbas, T.; Khan, M.U.; Qaiser, M.A.; Mahmoud, M.H.H. First-Principles Calculations of the Structural, Mechanical, Optical, and Electronic Properties of X2Bi4Ti5O18 (X = Pb, Ba, Ca, and Sr) Bismuth-Layered Materials for Photovoltaic Applications. Crystals 2024, 14, 870. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; He, Y.; Stoumpos, C.C.; Niu, G.; Trimarchi, G.G.; Guo, H.; Dong, G.; Wang, D.; Wang, L.; et al. Cs2PbI2Cl2, all-inorganic two-dimensional Ruddlesden–Popper mixed halide perovskite with optoelectronic response. J. Am. Chem. Soc. 2018, 140, 11085–11090. [Google Scholar] [CrossRef] [PubMed]
- Yatoo, M.A.; Seymour, I.D.; Skinner, S.J. Neutron diffraction and DFT studies of oxygen defect and transport in higher-order Ruddlesden–Popper phase materials. RSC Adv. 2023, 13, 13786–13797. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Tang, K.; Shao, Q.; Li, G.; Zeng, S.; Zheng, H. Synthesis, crystal structure, and photocatalytic activity of a new two-layer Ruddlesden–Popper phase, Li2CaTa2O7. J. Solid State Chem. 2008, 181, 964–970. [Google Scholar] [CrossRef]
- Galven, C.; Mounier, D.; Bouchevreau, B.; Suard, E.; Bulou, A.; Crosnier-Lopez, M.P.; Berre, F.L. Phase transitions in the Ruddlesden–Popper phase Li2CaTa2O7: X-ray and neutron powder thermodiffraction, TEM, Raman, and SHG experiments. Inorg. Chem. 2016, 55, 2309–2323. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Q.; Li, X.; Li, B.; Luo, J.; Hu, Y.; Tang, K. Preparation of a Li+ intercalated organic derivative of the Ruddlesden–Popper phase H2CaTa2O7. J. Alloys Compd. 2015, 645, 24–28. [Google Scholar] [CrossRef]
- Akbarian-Tefaghi, S.; Vegia, E.T.; Amnad, G.; Wiley, J.B. Rapid topochemical modification of layered perovskites via microwave reactions. Inorg. Chem. 2016, 55, 1604–1612. [Google Scholar] [CrossRef]
- Hasin, K.E.; Nowadnick, E.A. Competing polar and antipolar phases in n = 2 Ruddlesden-Popper niobates and tantalates from first principles. Phys. Rev. Mater. 2023, 7, 124402. [Google Scholar] [CrossRef]
- Aycibin, M. Ab initio study of Li2CaTa2O7 compound: Electronic and optical properties forthree phases. Turk. J. Phys. 2019, 43, 355–364. [Google Scholar]
- Segall, M.D.; Lindan, P.J.; Probert, M.A.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Wu, Z.; Cohen, R.E. More accurate generalized gradient approximation for solids. Phys. Rev. B—Condens. Matter Mater. Phys. 2006, 73, 235116. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Head, J.D.; Zerner, M.C. A Broyden—Fletcher—Goldfarb—Shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270. [Google Scholar] [CrossRef]
- Hussain, A.; Kainat, F.; Hamza, A.; Naz, A.; Jabeen, N.; Munawar, T.; Qaiser, M.A. A DFT Study on the Structural, Electronic, Optical, and Elastic Properties of BLSFs XTi4Bi4O15 (X = Sr, Ba, Be, Mg) for Solar Energy Applications. Ceramics 2024, 7, 1727–1741. [Google Scholar] [CrossRef]
- Rahman, M.; Akhand, M.R.U.; Ali, M.M.; Barman, P.; Rahman, M.F.; Rasheduzzaman, M.; Hossen, M.M.; Choudhury, M.S.H.; Nasrin, S.; Hasan, M.Z. DFT insight into structural, mechanical, electronic, optical and thermal properties of eco-friendly perovskites CuXO3 (X = Al, In). Phys. B Condens. Matter 2024, 685, 415997. [Google Scholar] [CrossRef]
- Wooten, F. Optical Properties of Solids; Academic Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Desjarlais, M.P. Density functional calculations of the reflectivity of shocked xenon with ionization based gap corrections. Contrib. Plasma Phys. 2005, 45, 300–304. [Google Scholar] [CrossRef]
- Abubakr, M.; Fatima, K.; Abbas, Z.; Hussain, A.; Jabeen, N.; Raza, H.H.; Chaib, Y.; Muhammad, S.; Siddeeg, S.M.; Gorczyca, I. Effect of S, Se and Te replacement on structural, optoelectronic and transport properties of SrXO4 (X = S, Se, Te) for energy applications: A first principles study. J. Solid State Chem. 2022, 305, 122689. [Google Scholar] [CrossRef]
- Griffiths, D.J.; Colleger, R. Introduction to Electrodynamics; Prentice Hall: Upper Saddle River, NJ, USA, 1999; p. 7458. [Google Scholar]
- Ujihara, K. Reflectivity of metals at high temperatures. J. Appl. Phys. 1972, 43, 2376–2383. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rahaman, M.Z.; Khatun, M.A.; Sarker, M.A.R. First principles investigation of structural, electronic and optical properties of NiV2O6. Comput. Condens. Matter 2018, 15, 95–99. [Google Scholar] [CrossRef]
- Born, M. On the stability of crystal lattices. I. Math. Proc. Camb. Philos. Soc. 1940, 36, 160–172. [Google Scholar] [CrossRef]
- Mehl, M.J.; Klein, B.M.; Papaconstantopoulos, D.A. First-principles calculation of elastic properties. Intermet. Compd. 1994, 1, 195–210. [Google Scholar]
Compound | a (Å) | b (Å) | c (Å) | α = β = γ |
---|---|---|---|---|
Li2CaTa2O7 | 5.52 | 5.46 | 18.16 | 90° |
Na2CaTa2O7 | 5.63 | 5.71 | 20.02 | 90° |
K2CaTa2O7 | 5.89 | 5.66 | 20.82 | 90° |
Rb2CaTa2O7 | 6.44 | 6.11 | 20.81 | 90° |
Name | Li2CaTa2O7 | Na2CaTa2O7 | K2CaTa2O7 | Rb2CaTa2O7 |
---|---|---|---|---|
C11 | 122.1879 | 164.0388 | 282.3363 | 382.8475 |
C22 | 113.0975 | 161.0484 | 292.0578 | 302.5688 |
C33 | 155.7685 | 143.507 | 259.8871 | 381.9728 |
C44 | 18.2948 | 54.566 | 89.4783 | 90.5571 |
C55 | 16.3707 | 62.7448 | 91.012 | 101.3848 |
C66 | 41.6563 | 44.4796 | 89.7577 | 82.469 |
C12 | 75.3125 | 143.8251 | 251.8643 | 304.622 |
C13 | 112.5409 | 146.7116 | 204.1605 | 296.6557 |
C23 | 114.5335 | 150.7923 | 200.5333 | 288.449 |
B | 97.2951 | 153.4672 | 220.6509 | 278.9065 |
G | 17.7561 | 17.0879 | 50.8638 | 38.421 |
E | 50.2 | 49.44 | 141.71 | 110.21 |
B/G | 5.48 | 8.9 | 4.3 | 7.25 |
G/B | 0.18 | 0.11 | 0.23 | 0.13 |
v | 0.41 | 0.45 | 0.39 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Jabeen, N.; Yaqoob, A.; Zafar, S.; Khan, M.U.; Ayob, E.A.; Khalifa, M.E. First-Principles Investigation of Diverse Properties of X2CaTa2O7 (X = Li, Na, K, and Rb) Ruddlesden–Popper Compounds for Photovoltaic Applications. Crystals 2025, 15, 228. https://doi.org/10.3390/cryst15030228
Hussain A, Jabeen N, Yaqoob A, Zafar S, Khan MU, Ayob EA, Khalifa ME. First-Principles Investigation of Diverse Properties of X2CaTa2O7 (X = Li, Na, K, and Rb) Ruddlesden–Popper Compounds for Photovoltaic Applications. Crystals. 2025; 15(3):228. https://doi.org/10.3390/cryst15030228
Chicago/Turabian StyleHussain, Ahmad, Nawishta Jabeen, Ali Yaqoob, Sumaira Zafar, Muhammad Usman Khan, Eman A. Ayob, and Mohamed E. Khalifa. 2025. "First-Principles Investigation of Diverse Properties of X2CaTa2O7 (X = Li, Na, K, and Rb) Ruddlesden–Popper Compounds for Photovoltaic Applications" Crystals 15, no. 3: 228. https://doi.org/10.3390/cryst15030228
APA StyleHussain, A., Jabeen, N., Yaqoob, A., Zafar, S., Khan, M. U., Ayob, E. A., & Khalifa, M. E. (2025). First-Principles Investigation of Diverse Properties of X2CaTa2O7 (X = Li, Na, K, and Rb) Ruddlesden–Popper Compounds for Photovoltaic Applications. Crystals, 15(3), 228. https://doi.org/10.3390/cryst15030228