Femtosecond Laser-Processed, Copper-Coated Stainless Steel Implants Promoting In Situ Calcium Phosphate Crystallization for Orthopedic Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Stainless Steel Samples
2.2. Femtosecond Laser Processing and Cu Magnetron Post-Modification of the Stainless Steel
2.3. In Situ CaP Crystalization
2.4. Surface Characterization: Morphological and Elemental Analysis
2.5. Antiviral Studies
3. Results
3.1. Morphological and Roughness Evaluation of the Cu-CaP Functionalized SS Samples
3.2. Elemental Characterization of the Cu-CaP Functionalized cSS and fsSS Samples
3.3. Antiviral Evaluation of Cu-CaP Functionalized Control and fsSS Plates
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LIPSS | laser–induced periodic surface structures |
| fs | femtosecond |
| SS | stainless steel |
| SEM | scanning electron microscopy |
| EDX | energy-dispersive X-ray spectroscopy |
| MDBK | Madin–Darby bovine kidney |
| DMEM | Dulbecco’s Modified Eagle Medium |
| FCS | fetal calf serum |
| PBS | phosphate-buffered saline |
| RLU | relative luminescence units |
| ROS | reactive oxygen species |
| ACP | amorphous calcium phosphate |
| MCS | metastable calcifying solution |
References
- World Health Organization. Fragility Fractures; WHO Fact Sheet. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/fragility-fractures (accessed on 2 October 2025).
- Svedbom, A.; Hernlund, E.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Epidemiology and Economic Burden of Osteoporosis in Europe: Fragility Fractures in the EU6 Countries. Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.-Y.; on behalf of the Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF). European Guidance for the Diagnosis and Management of Osteoporosis in Postmenopausal Women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E.; Aznar, J.M.; Evans, J.T.; Whitehouse, M.R.; Prieto-Alhambra, D.; Blom, A.W. Trends and Variation in the Incidence of Hip Fracture in Europe: A Population-Based Cohort Study of 704,762 Hip Fractures between 2014 and 2024. Lancet Reg. Health Eur. 2025, 40, 100798. [Google Scholar] [CrossRef]
- Mohammadi, H.; Eslami, H.; Fathi, M.H. Bioactive Calcium Phosphate Coatings for Bone Implant Applications: A Review. Coatings 2023, 13, 1091. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Yang, L.; Tang, B. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. Materials 2023, 16, 183. [Google Scholar] [CrossRef]
- Fiedler, J.; Hennig, D.; Keller, J.; Götz, W.; Schwabe, P.; Rupp, F. Copper Source Determines Chemistry and Topography of Implant Coatings to Optimally Couple Cellular Responses and Antibacterial Activity. Bioact. Mater. 2022, 13, 159–174. [Google Scholar] [CrossRef]
- Aunon, M.; Vázquez, J.; Romero, C.; Holgado, M.; Ortega, F.G. Femtosecond Laser Modified Metal Surfaces Alter Biofilm Architecture and Reduce Bacterial Biofilm Formation. Nanoscale Adv. 2023, 5, 3843–3854. [Google Scholar] [CrossRef]
- Šimek, M.; Ryl, J.; Veselý, J.; Mušálek, R.; Jelínek, M. Advanced Micro- & Nanostructuring for Enhanced Biocompatibility of Stainless Steel by Multi-Beam and Beam-Shaping Technology. Appl. Surf. Sci. 2025, 653, 159892. [Google Scholar] [CrossRef]
- Matei, A.T.; Visan, A.I.; Negut, I. Laser-Fabricated Micro/Nanostructures: Mechanisms, Fabrication Techniques, and Applications. Micromachines 2025, 16, 573. [Google Scholar] [CrossRef]
- Feng, J.; Wang, J.; Liu, H.; Sun, Y.; Fu, X.; Ji, S.; Liao, Y.; Tian, Y. A Review of an Investigation of the Ultrafast Laser Processing of Brittle and Hard Materials. Materials 2024, 17, 3657. [Google Scholar] [CrossRef]
- Niu, S.; Wang, W.; Liu, P.; Zhang, Y.; Zhao, X.; Li, J.; Xiao, M.; Wang, Y.; Li, J.; Shao, X. Recent Advances in Applications of Ultrafast Lasers. Photonics 2024, 11, 857. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhao, Y.; Zhou, H.; Zhang, Z. Surface Modification of Stainless Steel for Enhanced Antibacterial Activity. ACS Omega 2024, 9, 12345–12354. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium Orthophosphates (CaPO4): Occurrence and Properties. Materials 2022, 15, 5230. [Google Scholar] [CrossRef]
- Alhalawani, A.M.; Lin, Z.; Lee, T.C.; Stenzel, M.H. Advances in Calcium Phosphate–Based Coatings for Orthopedic and Dental Implants: Structure, Properties, and Biological Performance. Materials 2023, 16, 1947. [Google Scholar] [CrossRef]
- Lutey, A.H.A.; Gemini, L.; Romoli, L.; Lazzini, G.; Fuso, F.; Faucon, M.; Kling, R. Towards Laser-Textured Antibacterial Surfaces. Sci. Rep. 2018, 8, 10112. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, H.; Zeng, Y.; Xie, H.; Ma, D.; Wang, Z.; Liang, H. Recent Advances in Copper-Doped Titanium Implants. Materials 2022, 15, 2342. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Kaczmarek, D.; Antosiak, A.; Mazur, M.; Rybak, Z.; Rusak, A.; Osekowska, M.; Poniedziałek, A.; Gamian, A.; Szponar, B. Influence of Cu–Ti Thin Film Surface Properties on Antimicrobial Activity and Viability of Living Cells. Mater. Sci. Eng. C 2015, 56, 48–56. [Google Scholar] [CrossRef]
- Oyane, A.; Nakamura, M.; Sakamaki, I.; Shimizu, Y.; Miyata, S.; Miyaji, H. Laser-Assisted Wet Coating of Calcium Phosphate for Surface-Functionalization of PEEK. PLoS ONE 2018, 13, e0206524. [Google Scholar] [CrossRef]
- AISI. Steel Products Manual: Stainless Steels; American Iron and Steel Institute: Washington, DC, USA, 1980. [Google Scholar]
- Daskalova, A.; Angelova, L. Design of Surfaces with Persistent Antimicrobial Properties on Stainless Steel Developed Using Femtosecond Laser Texturing for Application in “High Traffic” Objects. Nanomaterials 2023, 13, 2396. [Google Scholar] [CrossRef]
- Dutour Sikirić, M.; Gergely, C.; Elkaim, R.; Wachtel, E.; Cuisinier, F.J.G.; Füredi-Milhofer, H. Biomimetic organic-inorganic nanocomposite coatings for titanium implants. J. Biomed. Mater. Res. A 2009, 89, 759–771. [Google Scholar] [CrossRef]
- Milisav, A.M.; Mičetić, M.; Dubček, P.; Sotelo, L.; Cantallops-Vilà, C.; Erceg, I.; Fontanot, T.; Bojanić, K.; Fiket, Ž.; Ivanić, M.; et al. Effect of Ag and Cu Doping on the Properties of ZnO Magnetron Sputtered Thin Films for Biomedical Applications. Appl. Surf. Sci. 2025, 690, 162623. [Google Scholar] [CrossRef]
- ISO 21702:2019; Measurement of Antiviral Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization (ISO): Geneva, Switzerland, 2019.
- EN 10088-1:2014; Stainless Steels—Part 1: List of Stainless Steels. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
- Sadauskas, M.; Trusovas, R.; Kvietkauskas, E.; Vrubliauskaitė, V.; Stankevičienė, I.; Jagminienė, A.; Murauskas, T.; Balkauskas, D.; Belosludtsev, A.; Ratautas, K. Advancing Nanoscale Copper Deposition through Ultrafast-Laser-Activated Surface Chemistry. Nanomaterials 2025, 15, 830. [Google Scholar] [CrossRef]
- Dywel, P.; Szczesny, R.; Domanowski, P.; Skowronski, L. Structural and micromechanical properties of Nd:YAG laser marking stainless steel (AISI 304 and AISI 316). Materials 2020, 13, 2168. [Google Scholar] [CrossRef]
- Dhaiveegan, P.; Elangovan, N.; Nishimura, T.; Rajendran, N. Corrosion behavior of 316L and 304 stainless steels exposed to industrial-marine-urban environment: Field study. RSC Adv. 2016, 6, 47314–47324. [Google Scholar] [CrossRef]
- Murthy, P.S.; Venugopalan, V.; Arunya, D.D.; Dhara, S.; Pandiyan, R.; Tyagi, A. Antibiofilm activity of nano-sized CuO. In Proceedings of the International Conference on Nanoscience, Engineering and Technology (ICONSET 2011), Chennai, India, 28–30 November 2011; pp. 580–583. [Google Scholar] [CrossRef]
- Aksoy Akgul, F.; Akgul, G.; Yildirim, N.; Unalan, H.E.; Turan, R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 2014, 147, 987–995. [Google Scholar] [CrossRef]
- Pasteris, J.D.; Wopenka, B.; Valsami-Jones, E. Bone and Tooth Mineralization: Insights from Raman Spectroscopy. Biochim. Biophys. Acta 2008, 1830, 2899–2908. [Google Scholar] [CrossRef]
- Furlani, M.; Notarstefano, V.; Riberti, N.; D’Amico, E.; Pierfelice, T.V.; Mangano, C.; Giorgini, E.; Iezzi, G.; Giuliani, A. Healing Kinetics of Sinus Lift Augmentation Using Biphasic Calcium Phosphate Granules: A Case Series in Humans. Bioengineering 2025, 12, 848. [Google Scholar] [CrossRef]
- Hilton, J.; Nanao, Y.; Flokstra, M.; Askari, M.; Smith, T.K.; Di Falco, A.; King, P.D.C.; Wahl, P.; Adamson, C.S. The Role of Ion Dissolution in Metal and Metal Oxide Surface Inactivation of SARS-CoV-2. Appl. Environ. Microbiol. 2024, 90, e01553-23. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium Orthophosphates in Nature, Biology and Medicine. Materials 2009, 2, 399–498. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, Y.; Hu, R.; Shi, B.; Zhang, L.; Huang, Q.; Yang, Y.; Tang, P.; Lin, C. Advanced Surface Engineering of Titanium Materials for Biomedical Applications: From Static Modification to Dynamic Responsive Regulation. Bioact. Mater. 2023, 27, 15–57. [Google Scholar] [CrossRef]
- Jahani, S.; Wang, L. The Effects of Surface Roughness on the Functionality of Ti13Nb13Zr Orthopedic Implants. Materials 2021, 14, 3546. [Google Scholar] [CrossRef]
- Rey, C.; Combes, C.; Drouet, C.; Glimcher, M.J. Bone mineral: Update on chemical composition and structure. Osteoporos. Int. 2007, 20, 1013–1021. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Liang, C.; Wang, H.; Yang, J.; Cai, Y.; Hu, X.; Yang, Y.; Li, B.; Li, H.; Li, H.; Li, C.; et al. Femtosecond Laser-Induced Micropattern and Ca/P Deposition on Ti Implant Surface and Its Acceleration on Early Osseointegration. ACS Appl. Mater. Interfaces 2013, 5, 8179–8186. [Google Scholar] [CrossRef]
- Wu, X.; Ao, H.; He, Z.; Wang, Q.; Peng, Z. Surface Modification of Titanium by Femtosecond Laser in Reducing Bacterial Colonization. Coatings 2022, 12, 414. [Google Scholar] [CrossRef]
- Su, W.; Zhang, M.; Liu, L.; Xu, R.; Huang, Z.; Shi, Z.; Liu, J.; Li, Z.; Li, X.; Hao, P.; et al. Femtosecond Laser Treatment Promotes the Surface Bioactivity and Bone Ingrowth of Ti6Al4V Bone Scaffolds. Front. Bioeng. Biotechnol. 2022, 10, 962483. [Google Scholar] [CrossRef]
- Meister, T.L.; Fortmann, J.; Breisch, M.; Sengstock, C.; Steinmann, E.; Köller, M.; Pfaender, S.; Ludwig, A. Nanoscale Copper and Silver Thin Film Systems Display Differences in Antiviral and Antibacterial Properties. Sci. Rep. 2022, 12, 7193. [Google Scholar] [CrossRef] [PubMed]
- Rakowska, P.D.; Tiddia, M.; Faruqui, N.; Bankier, C.; Pei, Y.; Pollard, A.J.; Zhang, J.; Gilmore, I.S. Antiviral Surfaces and Coatings and Their Mechanisms of Action. Commun. Mater. 2021, 2, 53. [Google Scholar] [CrossRef]





| SS Samples | Rpm—Averaged | Sa—Averaged | CaP Crystals Dimensions |
|---|---|---|---|
| 1. Cu-0-CaP | 1.943 µm | 2.211 µm | average height of crystals: 4–6 µm; largest crystal—12.97 µm |
| 2. Cu-1-CaP | 1.968 µm | 2.201 µm | average height of crystals: 6–9 µm; 19.25 µm (largest crystal) |
| 3. Cu-2-CaP | 7.469 µm | 6.567 µm | average height of crystals: 8–12 µm; largest crystal—62.43 µm |
| SS Samples | [at.%] Cu Before CaP Growth | [at.%] Cu After CaP Growth | [at.%] Ca After CaP Growth | [at.%] P After CaP Growth |
|---|---|---|---|---|
| 1. Cu-0-CaP | 69.30 | 55.20 | 4.74 | 8.72 |
| 2. Cu-1-CaP | 76.52 | 65.35 | 3.14 | 5.78 |
| 3. Cu-2-CaP | 67.59 | 60.38 | 3.50 | 8.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daskalova, A.; Dutour Sikirić, M.; Angelova, L.; Car, T.; Milisav, A.-M.; Neil, S.; Shaalan, A. Femtosecond Laser-Processed, Copper-Coated Stainless Steel Implants Promoting In Situ Calcium Phosphate Crystallization for Orthopedic Application. Crystals 2025, 15, 954. https://doi.org/10.3390/cryst15110954
Daskalova A, Dutour Sikirić M, Angelova L, Car T, Milisav A-M, Neil S, Shaalan A. Femtosecond Laser-Processed, Copper-Coated Stainless Steel Implants Promoting In Situ Calcium Phosphate Crystallization for Orthopedic Application. Crystals. 2025; 15(11):954. https://doi.org/10.3390/cryst15110954
Chicago/Turabian StyleDaskalova, Albena, Maja Dutour Sikirić, Liliya Angelova, Tihomir Car, Ana-Marija Milisav, Stuart Neil, and Abeer Shaalan. 2025. "Femtosecond Laser-Processed, Copper-Coated Stainless Steel Implants Promoting In Situ Calcium Phosphate Crystallization for Orthopedic Application" Crystals 15, no. 11: 954. https://doi.org/10.3390/cryst15110954
APA StyleDaskalova, A., Dutour Sikirić, M., Angelova, L., Car, T., Milisav, A.-M., Neil, S., & Shaalan, A. (2025). Femtosecond Laser-Processed, Copper-Coated Stainless Steel Implants Promoting In Situ Calcium Phosphate Crystallization for Orthopedic Application. Crystals, 15(11), 954. https://doi.org/10.3390/cryst15110954

