Mechanical Behaviors of Copper Nanoparticle Superlattices: Role of Lattice Structure
Abstract
1. Introduction
2. Material and Methodology
2.1. Construction of Copper Nanoparticle Superlattice and Assembly
2.2. Setup of Atomic Simulation
3. Results and Discussions
3.1. Compressive Loading Responses
3.2. Atomic Deformation Mechanisms in Nanoparticle Superlattices
3.2.1. Effects of Contact Patch Number
3.2.2. Effects of Contact Patch Orientations
3.3. A Parameter to Explain the Structure-Dependent Flow Stress
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Begley, M.R.; Gianola, D.S.; Ray, T.R. Bridging functional nanocomposites to robust macroscale devices. Sci. Adv. 2019, 364, 1250. [Google Scholar] [CrossRef]
- Yao, Y.; McDowell, M.T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W.D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-Ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954. [Google Scholar] [CrossRef]
- Lionello, C.; Perego, C.; Gardin, A.; Klajn, R.; Pavan, G.M. Supramolecular semiconductivity through emerging Ionic gates in ion-nanoparticle superlattices. ACS Nano 2023, 17, 275–287. [Google Scholar] [CrossRef]
- Young, K.L.; Ross, M.B.; Blaber, M.G.; Rycenga, M.; Jones, M.R.; Zhang, C.; Senesi, A.J.; Lee, B.; Schatz, G.C.; Mirkin, C.A. Using DNA to design plasmonic metamaterials with tunable optical properties. Adv. Mater. 2014, 26, 653–659. [Google Scholar] [CrossRef]
- Lee, M.S.; Yee, D.W.; Ye, M.; Macfarlane, R.J. Nanoparticle Assembly as a Materials Development Tool. J. Am. Chem. Soc. 2022, 144, 3330–3346. [Google Scholar] [CrossRef]
- Jambhulkar, S.; Ravichandran, D.; Zhu, Y.; Thippanna, V.; Ramanathan, A.; Patil, D.; Fonseca, N.; Thummalapalli, S.V.; Sundaravadivelan, B.; Sun, A.; et al. Nanoparticle assembly: From self-organization to controlled micropatterning for enhanced functionalities. Small 2024, 20, 2306394. [Google Scholar] [CrossRef]
- Zeng, C.; Chen, Y.; Kirschbaum, K.; Lambright, K.J.; Jin, R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 2016, 354, 6319. [Google Scholar] [CrossRef]
- Lu, F.; Vo, T.; Zhang, Y.; Frenkel, A.; Yager, K.G.; Kumar, S.; Gang, O. Unusual packing of soft-shelled nanocubes. Sci. Adv. 2019, 5, 2399. [Google Scholar] [CrossRef] [PubMed]
- Marino, E.; LaCour, R.A.; Kodger, T.E. Emergent Properties from three-dimensional assemblies of (nano)particles in confined spaces. Cryst. Growth Des. 2024, 24, 6060–6080. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Myung, S.; Kim, T.; Hong, S. Robust single-nanoparticle probe for contact-mode analysis and dip-pen nanolithography. Small 2008, 4, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, I.M.P.; Jacobs, T.D.B.; Martini, A. Atomistic simulations of the elastic compression of platinum nanoparticles. Nanoscale Res. Lett. 2022, 17, 96. [Google Scholar] [CrossRef]
- Yang, L.; Bian, J.; Wang, G. Impact of atomic-scale surface morphology on the size-dependent yield stress of gold nanoparticles. J. Phys. D Appl. Phys. 2017, 50, 245302. [Google Scholar] [CrossRef]
- Bian, J.J.; Yang, L.; Niu, X.R.; Wang, G.F. Orientation-dependent deformation mechanisms of bcc niobium nanoparticles. Phil. Mag. 2018, 98, 1848–1864. [Google Scholar] [CrossRef]
- Erbi, M.; Amara, H.; Gatti, R. Tuning elastic properties of metallic nanoparticles by shape controlling: From atomistic to continuous models. Small 2023, 19, 2302116. [Google Scholar] [CrossRef] [PubMed]
- Mordehai, D.; Rabkin, E. Pseudoelastic deformation during nanoscale adhesive contact formation. Phys. Rev. Lett. 2011, 107, 449. [Google Scholar] [CrossRef]
- Sun, J.; He, L.; Lo, Y.C.; Xu, T.; Bi, H.; Sun, L.; Zhang, Z.; Mao, S.X.; Li, J. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 2014, 13, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Mordehai, D.; Lee, S.; Backes, B.; Srolovitz, D.J.; Nix, W.D.; Rabkin, E. Size effect in compression of single-crystal gold microparticles. Acta Mater. 2011, 59, 5202–5215. [Google Scholar] [CrossRef]
- Sharma, A.; Hickman, J.; Gazit, N.; Rabkin, E.; Mishin, Y. Nickel nanoparticles set a new record of strength. Nat. Commun. 2018, 9, 4102. [Google Scholar] [CrossRef]
- Lu, C.; Pan, Y.; Fang, H.; Wu, B.; Wu, Y.; Chen, J.; He, Q.; Liu, Z. Weak size-dependent strength and extreme plastic deformation of single crystal Cu microparticles. J. Phys. Chem. C 2024, 128, 11419–11426. [Google Scholar] [CrossRef]
- Iteney, H.; Cornelius, T.W.; Thomas, O.; Amodeo, J. Influence of surface roughness on the deformation of gold nanoparticles under compression. Acta Mater. 2024, 281, 120317. [Google Scholar] [CrossRef]
- Bian, J.J.; Wang, G.F. Atomistic deformation mechanisms in copper nanoparticles. J. Comput. Theor. Nanosci. 2013, 10, 2299–2303. [Google Scholar] [CrossRef]
- Valencia, F.J.; Amigo, N.; Bringa, E.M. Tension–compression behavior in gold nanoparticle arrays: A molecular dynamics study. Nanotechnology 2021, 32, 385715. [Google Scholar] [CrossRef]
- Ibrahim, H.; Balédent, V.; Impéror-Clerc, M.; Pansu, B. Mechanics under pressure of gold nanoparticle supracrystals: The role of the soft matrix. RSC Adv. 2022, 12, 23675–23679. [Google Scholar] [CrossRef]
- Srivastava, I.; Peters, B.L.; Lane, J.M.D.; Fan, H.; Grest, G.S.; Salerno, M.K. Mechanics of gold nanoparticle superlattices at high hydrostatic pressures. J. Phys. Chem. C 2019, 123, 16457–16466. [Google Scholar] [CrossRef]
- Yoon, B.; Luedtke, W.D.; Barnett, R.N.; Gao, J.; Desireddy, A.; Conn, B.E.; Bigioni, T.; Landman, U. Hydrogen-bonded structure and mechanical chiral response of a silver nanoparticle superlattice. Nat. Mater. 2014, 13, 807–811. [Google Scholar] [CrossRef]
- Schlicke, H.; Kunze, S.; Finsel, M.; Leib, E.W.; Schröter, C.J.; Blankenburg, M.; Noei, H.; Vossmeyer, T. Tuning the elasticity of cross-linked gold nanoparticle assemblies. J. Phys. Chem. C 2019, 123, 23777–23785. [Google Scholar] [CrossRef]
- Lu, L.; Chen, X.; Huang, X.; Lu, K. Revealing the maximum strength in nanotwinned copper. Science 2009, 323, 607. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef]
- Dong, T.; Wu, H.; Lin, M. Superlattice of octanethiol-protected copper nanoparticles. Langmuir 2006, 22, 6754–6756. [Google Scholar] [CrossRef]
- Shaik, A.H.; Chakraborty, J. Synthesis of monodisperse copper nanoparticles using a modified digestive ripening technique and formation of superlattices. RSC Adv. 2015, 5, 85974–85977. [Google Scholar] [CrossRef]
- Ouyang, T.; Akbari-Sharbaf, A.; Park, J.; Bauld, R.; Cottam, M.G.; Fanchini, G. Self-assembled metallic nanoparticle superlattices on large-area graphene thin films: Growth and evanescent waveguiding properties. RSC Adv. 2015, 5, 98814–98821. [Google Scholar] [CrossRef]
- Du, L.; Liu, K.; Hu, D.; Backe, O.; Hu, X.; Ji, X.; Fan, J.; Poelma, R.H.; Colliander, M.H.; Zhang, G. Microstructural and mechanical anisotropy in pressure-assisted sintered copper nanoparticles. Acta Mater. 2025, 287, 120772. [Google Scholar] [CrossRef]
- Missoni, L.L.; Tagliazucchi, M. The phase behavior of nanoparticle superlattices in the presence of a solvent. ACS Nano 2020, 4, 5649–5658. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Pretti, E.; Mittal, J. Temperature-controlled reconfigurable nanoparticle binary superlattices. ACS Nano 2021, 15, 8466–8473. [Google Scholar] [CrossRef]
- Stoeva, S.I.; Prasad, B.I.V.; Uma, S.; Stoimenov, P.K.; Zaikovski, V.; Sorensen, C.M.; Klabunde, K.J. Face-centered cubic and hexagonal closed-packed nanocrystal superlattices of gold nanoparticles prepared by different methods. J. Phys. Chem. B 2003, 107, 7441–7448. [Google Scholar] [CrossRef]
- Tsuji, Y.; Tanaka, T.; Ishida, T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 1992, 71, 239–250. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Plimpton, S.J. Aspherical particle models for molecular dynamics simulation. Comp. Phys. Commun. 2019, 243, 12–24. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Mishin, Y.; Mehl, M.J.; Papaconstantopoulos, D.A.; Voter, A.F.; Kress, J.D. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 2001, 63, 224106. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Lu, L.; Lu, K.; Gao, H. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 2010, 464, 877–880. [Google Scholar] [CrossRef]
- Zhang, X.; Han, J.; Plombon, J.J.; Sutton, A.P.; Srolovitz, D.J.; Boland, J.J. Nanocrystalline copper films are never flat. Science 2017, 357, 398–400. [Google Scholar] [CrossRef]
- Nosé, S.A. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Morante, S.; Rossi, G.C.; Testa, M. The stress tensor of a molecular system: An exercise in statistical mechanics. J. Chem. Phys. 2006, 125, 034101. [Google Scholar] [CrossRef] [PubMed]
- Stukowski, A. Structure identification method for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. 2012, 20, 045021. [Google Scholar] [CrossRef]
- Tsuzuki, H.; Branicio, P.S.; Rino, J.P. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comp. Phys. Commun. 2007, 177, 518–523. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with Ovito-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Abedini, A.; Montazeri, A.; Malti, A.; Kardani, A. Mechanical properties are affected by coalescence mechanisms during sintering of metal powders: Case study of Al-Cu nanoparticles by molecular dynamics simulation. Power Technol. 2022, 405, 117567. [Google Scholar] [CrossRef]
- Tobita, Y. Fabric tensors in constitutive equations for granular materials. Soils Found. 1989, 29, 91–104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, J.; Yang, L. Mechanical Behaviors of Copper Nanoparticle Superlattices: Role of Lattice Structure. Crystals 2025, 15, 884. https://doi.org/10.3390/cryst15100884
Bian J, Yang L. Mechanical Behaviors of Copper Nanoparticle Superlattices: Role of Lattice Structure. Crystals. 2025; 15(10):884. https://doi.org/10.3390/cryst15100884
Chicago/Turabian StyleBian, Jianjun, and Liang Yang. 2025. "Mechanical Behaviors of Copper Nanoparticle Superlattices: Role of Lattice Structure" Crystals 15, no. 10: 884. https://doi.org/10.3390/cryst15100884
APA StyleBian, J., & Yang, L. (2025). Mechanical Behaviors of Copper Nanoparticle Superlattices: Role of Lattice Structure. Crystals, 15(10), 884. https://doi.org/10.3390/cryst15100884