On the Possibility of Using Secondary Alloys in the Production of Aluminum-Based Metal Matrix Composite
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure
3.2. Thermophysical Properties
3.3. Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natarajan, N.; Vijayarangan, S.; Rajendran, I. Wear Behaviour of A356/25SiCp Aluminium Matrix Composites Sliding against Automobile Friction Material. Wear 2006, 261, 812–822. [Google Scholar] [CrossRef]
- Awe, S.A.; Thomas, A. The Prospects of Lightweight SICAlight Discs in the Emerging Disc Brake Requirements. Transport 2021, 13, 14. [Google Scholar]
- Gramstat, S. Technological Measures for Brake Wear Emission Reduction. In Non-Exhaust Emissions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 205–227. [Google Scholar]
- Ferraro, S.; Timelli, G. Influence of Sludge Particles on the Tensile Properties of Die-Cast Secondary Aluminum Alloys. Metall. Mater. Trans. B 2015, 46, 1022–1034. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Arribas, M.; Galarraga, H.; Garcia de Cortazar, M.; Ellero, M.; Girot, F. Effects of Mn Addittion, Cooling Rate and Holding Temperature on the Modification and Purification of Iron-Rich Compounds in AlSi10MnMg(Fe) Alloy. Heliyon 2023, 9, e13005. [Google Scholar] [CrossRef]
- Lee, H.; Sohn, S.S.; Jeon, C.; Jo, I.; Lee, S.K.; Lee, S. Dynamic Compressive Deformation Behavior of SiC-Particulate-Reinforced A356 Al Alloy Matrix Composites Fabricated by Liquid Pressing Process. Mater. Sci. Eng. A 2017, 680, 368–377. [Google Scholar] [CrossRef]
- Yang, X.; Barekar, N.S.; Ji, S.; Dhindaw, B.K.; Fan, Z. Influence of Reinforcing Particle Distribution on the Casting Characteristics of Al-SiCp Composites. J. Mater. Process. Technol. 2020, 279, 116580. [Google Scholar] [CrossRef]
- Prakash, U.; Prasad, S.L.A.; Ravindra, H. V Study of Parametric Influence on Dry Sliding Wear of Al-SiCp MMC Using Taguchi Technique. Mater. Today Proc. 2015, 2, 1825–1832. [Google Scholar] [CrossRef]
- An, Q.; Cong, X.; Shen, P.; Jiang, Q. Roles of Alloying Elements in Wetting of SiC by Al. J. Alloys Compd. 2019, 784, 1212–1220. [Google Scholar] [CrossRef]
- Bushlya, V.; Lenrick, F.; Gutnichenko, O.; Petrusha, I.; Osipov, O.; Kristiansson, S.; Stahl, J.E. Performance and Wear Mechanisms of Novel Superhard Diamond and Boron Nitride Based Tools in Machining Al-SiCp Metal Matrix Composite. Wear 2017, 376–377, 152–164. [Google Scholar] [CrossRef]
- Christy, J.V.; Arunachalam, R.; Mourad, A.H.I.; Krishnan, P.K.; Piya, S.; Al-Maharbi, M. Processing, Properties, and Microstructure of Recycled Aluminum Alloy Composites Produced Through an Optimized Stir and Squeeze Casting Processes. J. Manuf. Process. 2020, 59, 287–301. [Google Scholar] [CrossRef]
- Christy, J.V.; Mourad, A.H.I. Friction Stir Welding of Hybrid Recycled Metal Matrix Composites. In Proceedings of the Pressure Vessels and Piping Division (Publication) PVP, Las Vegas, NV, USA, 17–22 July 2022; American Society of Mechanical Engineers: New York City, NY, USA; Volume 4-A. [Google Scholar] [CrossRef]
- Christy, J.V.; Mourad, A.H.I.; Qudeiri, J.A. Tribological Analysis of Squeeze Stir Cast Recycled Aluminum MMC’s. In Proceedings of the ASME 2021 Pressure Vessels & Piping Division (Publication) PVP, Virtual, 13–15 July 2021; American Society of Mechanical Engineers: New York City, NY, USA; p. 4. [Google Scholar] [CrossRef]
- Mourad, A.H.I.; Christy, J.V.; Krishnan, P.K.; Mozumder, M.S. Production of Novel Recycled Hybrid Metal Matrix Composites Using Optimized Stir Squeeze Casting Technique. J. Manuf. Process. 2023, 88, 45–58. [Google Scholar] [CrossRef]
- Krishnan, P.K.; Christy, J.V.; Arunachalam, R.; Mourad, A.-H.I.; Muraliraja, R.; Al-Maharbi, M.; Murali, V.; Chandra, M.M. Production of Aluminum Alloy-Based Metal Matrix Composites Using Scrap Aluminum Alloy and Waste Materials: Influence on Microstructure and Mechanical Properties. J. Alloys Compd. 2019, 784, 1047–1061. [Google Scholar] [CrossRef]
- Thilak, R.; Rajan, K.; Ramesh, S.; Boppana, S.B.; Krishnan, P.K. Sustainable Development on Production and Characterization of Metal Matrix Composites Using Stir Casting. J. Phys. Commun. 2023, 7, 065002. [Google Scholar] [CrossRef]
- Bulei, C.; Kiss, I.; Alexa, V. Development of Metal Matrix Composites Using Recycled Secondary Raw Materials from Aluminium Wastes. Mater. Today Proc. 2021, 45, 4143–4149. [Google Scholar] [CrossRef]
- Skrobian, M.; Krahulec, J.; Krivan, P. Recycling of carbon containing aluminum matrix composites via their remelting. Acta Metall. Slovaca 2014, 20, 405–409. [Google Scholar] [CrossRef]
- Mandal, D.; Viswanathan, S. Effect of Re-Melting on Particle Distribution and Interface Formation in SiC Reinforced 2124Al Matrix Composite. Mater. Charact. 2013, 86, 21–27. [Google Scholar] [CrossRef]
- Sun, N.; Wang, Z.; Guo, L.; Wang, L.; Guo, Z. Efficient Separation of Reinforcements and Matrix Alloy from Aluminum Matrix Composites by Supergravity Technology. J. Alloys Compd. 2020, 843, 155814. [Google Scholar] [CrossRef]
- Hirsch, S.J.; Grund, T.; Lampke, T. Towards Closed-Loop Recycling of Ceramic Particle-Reinforced Aluminium Alloys: Comparative Study of Resistance-Heating Sintered Primary and Solid-State Recycled Secondary SiCp/AlSi7Mg Composites. Crystals 2023, 13, 830. [Google Scholar] [CrossRef]
- Thomas, A.; Zervos, N.; Ekelund, A.; Awe, S.A. Simulation Study on the Thermomechanical Behaviour of Al-MMC Automotive Brake Discs. Eurobrake 2019, 2019, 1–12. [Google Scholar]
- SiCAlight—AC Floby. Available online: https://www.sicalight.com/ (accessed on 1 March 2024).
- Lattanzi, L.; Etienne, A.; Li, Z.; Manjunath, T.; Nixon, N.; Jarfors, A.E.W.; Awe, S.A. The Influence of Ni and Zr Additions on the Hot Compression Properties of Al-SiCp Composites. J. Alloys Compd. 2022, 905, 164160. [Google Scholar] [CrossRef]
- Density—NETZSCH Analyzing & Testing. Available online: https://analyzing-testing.netzsch.com/en/training-know-how/glossary/density (accessed on 14 December 2023).
- Coefficient of Linear Thermal Expansion (CLTE/CTE)—NETZSCH Analyzing & Testing. Available online: https://analyzing-testing.netzsch.com/en/training-know-how/glossary/coefficient-of-linear-thermal-expansion-clte-cte (accessed on 14 December 2023).
- Thermal Conductivity—NETZSCH Analyzing & Testing. Available online: https://analyzing-testing.netzsch.com/en/training-know-how/glossary/thermal-conductivity (accessed on 14 December 2023).
- Specific Heat Capacity (Cp)—NETZSCH Analyzing & Testing. Available online: https://analyzing-testing.netzsch.com/en/training-know-how/glossary/specific-heat-capacity-cp (accessed on 14 December 2023).
- E8/E8M Standard Test Methods for Tension Testing of Metallic Materials. Available online: https://www.astm.org/e0008_e0008m-22.html (accessed on 26 March 2024).
- E9 Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. Available online: https://www.astm.org/e0009-09.html (accessed on 26 March 2024).
- Gyarmati, G.; Fegyverneki, G.; Mende, T.; Tokár, M. Characterization of the Double Oxide Film Content of Liquid Aluminum Alloys by Computed Tomography. Mater. Charact. 2019, 157, 109925. [Google Scholar] [CrossRef]
- Eisaabadi, B.G.; Davami, P.; Kim, S.K.; Tiryakioǧlu, M. The Effect of Melt Quality and Filtering on the Weibull Distributions of Tensile Properties in Al–7%Si–Mg Alloy Castings. Mater. Sci. Eng. A 2013, 579, 64–70. [Google Scholar] [CrossRef]
- Barton, D.C. Composite Materials for Automotive Braking Systems. In Advanced Composite Materials for Automotive Applications; Wiley: Hoboken, NY, USA, 2013; pp. 389–403. [Google Scholar]
Element | MMC_1 | MMC_2 |
---|---|---|
Silicon (Si) | >24 | >24 |
Iron (Fe) | 0.22 ± 0.07 | 0.41 ± 0.01 |
Copper (Cu) | 0.41 ± 0.06 | 0.71 ± 0.05 |
Manganese (Mn) | 0.01 ± 0.001 | 0.34 ± 0.01 |
Magnesium (Mg) | 0.41 ± 0.01 | 0.31 ± 0.09 |
Titanium (Ti) | 0.08 ± 0.003 | 0.06 ± 0.002 |
Aluminum (Al) | balance | balance |
Element | CO2 Footprint [kg/kg] | Energy [MJ/kg] |
---|---|---|
Virgin material | 11.9–13.1 | 169–187 |
Recycling | 2.37–2.62 | 30.2–33.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lattanzi, L.; Jarfors, A.E.W.; Awe, S.A. On the Possibility of Using Secondary Alloys in the Production of Aluminum-Based Metal Matrix Composite. Crystals 2024, 14, 333. https://doi.org/10.3390/cryst14040333
Lattanzi L, Jarfors AEW, Awe SA. On the Possibility of Using Secondary Alloys in the Production of Aluminum-Based Metal Matrix Composite. Crystals. 2024; 14(4):333. https://doi.org/10.3390/cryst14040333
Chicago/Turabian StyleLattanzi, Lucia, Anders E. W. Jarfors, and Samuel A. Awe. 2024. "On the Possibility of Using Secondary Alloys in the Production of Aluminum-Based Metal Matrix Composite" Crystals 14, no. 4: 333. https://doi.org/10.3390/cryst14040333
APA StyleLattanzi, L., Jarfors, A. E. W., & Awe, S. A. (2024). On the Possibility of Using Secondary Alloys in the Production of Aluminum-Based Metal Matrix Composite. Crystals, 14(4), 333. https://doi.org/10.3390/cryst14040333