Up-Conversion Luminescence and Optical Temperature Sensing Behaviour of Y2O3:Ho3+, Yb3+ Phosphors
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis
2.2. Characterization
3. Results and Discussion
3.1. Structural and Surface Morphology Analysis
3.2. Optical Properties
3.3. UC Luminescence Studies
3.4. Optical Temperature Sensing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mun, J.H.; Jouini, A.; Novoselov, A.; Yoshikawa, A.; Fukuda, T. Crystal growth and thermal conductivity of an Tm3+-doped Y2O3 for IR eye-safe laser. J. Ceram. Process Res. 2011, 12, 169–172. [Google Scholar]
- Mader, H.S.; Kele, P.; Saleh, S.M.; Wolfbeis, O.S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol. 2010, 14, 582–596. [Google Scholar] [CrossRef]
- Le Toquin, R.; Cheetham, A. Red-emitting cerium-based phosphor materials for solid-state lighting applications. Chem. Phys. Lett. 2006, 423, 352–356. [Google Scholar] [CrossRef]
- Wade, S.A.; Collins, S.F.; Baxter, G.W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 2003, 94, 4743–4756. [Google Scholar] [CrossRef]
- Fischer, S.; Goldschmidt, J.C.; Loper, P.; Bauer, G.H.; Bruggemann, R.; Kramer, K.; Biner, D.; Hermle, M.; Glunz, S.W. Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization. J. Appl. Phys. 2010, 108, 0044912. [Google Scholar] [CrossRef]
- Ye, S.; Xiao, F.; Pan, Y.; Ma, Y.; Zhang, Q. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Mater. Sci. Eng. R Rep. 2010, 71, 1–34. [Google Scholar] [CrossRef]
- Dwivedi, Y.; Bahadur, A.; Rai, S.B. Optical avalanche in Ho:Yb:Gd2O3 nanocrystals. J. Appl. Phys. 2011, 110, 043103. [Google Scholar] [CrossRef]
- Luo, X.-X.; Cao, W.-H. Upconversion luminescence of holmium and ytterbium co-doped yttrium oxysulfide phosphor. Mater. Lett. 2007, 61, 3696–3700. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Molokeev, M.; Oreshonkov, A.; Atuchin, V. Microwavesol–gel synthesis and upconversion photoluminescence properties of CaGd2(WO4)4:Er3+/Yb3+ phosphors with incommensurately modulated structure. J. Solid State. Chem. 2015, 228, 160–166. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Molokeev, M.; Oreshonkov, A.; Atuchin, V. Structural and Spectroscopic Effects of Li+ Substitution for Na+ in LixNa1-xCaGd0.5Ho0.05Yb0.45(MoO4)3 Scheelite-Type Upconversion Phosphors. Molecules 2021, 26, 7357. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, N.M.; van Veggel, F.C.J.M. Lanthanum Silicate and Lanthanum Zirconate Nanoparticles Co-Doped with Ho3+ and Yb3+: Matrix-Dependent Red and Green Upconversion Emissions. J. Phys. Chem. C 2009, 113, 14702–14707. [Google Scholar] [CrossRef]
- Jackson, S.; Li, Y. High-power broadly tunable Ho3+-doped silica fibre laser. Electron. Lett. 2004, 40, 1474–1475. [Google Scholar] [CrossRef]
- An, N.; Ye, L.; Bao, R.; Yue, L.; Wang, L. Up-conversion luminescence characteristics and temperature sensing of Y2O3: Ho3+/Yb3+ single crystal fiber. J. Lumin. 2019, 215, 116657. [Google Scholar] [CrossRef]
- Singh, V.; Rai, V.K.; Ledoux-Rak, I.; Watanabe, S.; Rao, T.K.G.; Chubaci, J.F.D.; Badie, L.; Pelle, F.; Ivanova, S. NIR to visible up-conversion, infrared luminescence, thermoluminescence and defect centres in Y2O3: Er phosphor. J. Phys D Appl. Phys. 2009, 42, 065104. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, 32, 751–766. [Google Scholar] [CrossRef]
- Pandey, A.; Rai, V.K.; Dey, R.; Kumar, K. Enriched green upconversion emission in combustion synthesized Y2O3:Ho3+–Yb3+ phosphor. Mater. Chem. Phys. 2013, 139, 483–488. [Google Scholar] [CrossRef]
- Wei, X.; Li, Y.; Cheng, X.; Chen, Y.; Yin, M. Strong dependence of upconversion luminescence on doping concentration in holmium and ytterbium co-doped Y2O3 phosphor. J. Rare Earths 2011, 29, 536–539. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Bu, Y.; Liu, C.-S.; Liu, T.; Yan, X. Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 2015, 5, 86219–86236. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Tian, Y.; Huang, P. Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions. Chem. Eng. J. 2016, 297, 26–34. [Google Scholar] [CrossRef]
- Kumar, V.; Zoellner, B.; Maggard, P.A.; Wang, G. Effect of doping Ge into Y2O3:Ho,Yb on the green-to-red emission ratio and temperature sensing. Dalton Trans. 2018, 47, 11158–11165. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.Q.; Jiang, X.M. Investigations on upconversion luminescence of K3Y(PO4)2:Yb3+-Er3+/Ho3+/Tm3+ phosphors for optical temperature sensing. J. Alloys Compd. 2018, 748, 438–445. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, B.; Chen, G.; Hua, Z. Upconversion Luminescence and Discussion of Sensitivity Improvement for Optical Temperature Sensing Application. Inorg. Chem. 2018, 57, 5038–5047. [Google Scholar] [CrossRef]
- Ge, H.Q.; Zhang, J. Investigation on luminescence properties of BaY2Si3O10:Er3+/Ho3+–Yb3+ for optical temperature sensing. J. Mater. Sci. Mater. Electron. 2018, 29, 20033–20039. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, K.; Wang, T.; Zhou, H.; Zhang, N.; Zhang, J.; Ye, L.; Jia, Z.; Tao, X. Sensitive Ho3+,Yb3+ co-doped mixed sesquioxide single crystal fibers thermometry based on upconversion luminescence. J. Alloys Compd. 2021, 891, 162062. [Google Scholar] [CrossRef]
- Khan, S.; Park, B.-I.; Han, J.S.; Lee, S.Y.; Cho, S.-H. Flame synthesized Y2O3:Tb3+–Yb3+ phosphors as spectral convertors for solar cells. Res. Chem. Intermed. 2018, 44, 4619–4632. [Google Scholar] [CrossRef]
- Yang, M.; Sui, Y.; Wang, S.; Wang, X.; Wang, Y.; Lü, S.; Zhang, Z.; Liu, Z.; Lü, T.; Liu, W. Effects of Bi3+ doping on the optical properties of Er3+:Y2O3. J. Alloys Compd. 2011, 509, 827–830. [Google Scholar] [CrossRef]
- Singh, V.; Rai, V.K.; Voss, B.; Haase, M.; Chakradhar, R.; Naidu, D.T.; Kim, S.H. Photoluminescence study of nanocrystalline Y2O3:Ho3+ phosphor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 109, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, Y.; Zhang, J.; Wang, Y.; Dong, P. Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first-and second-order energy transfers. Nanoscale Res. Lett. 2012, 7, 636. [Google Scholar] [CrossRef] [PubMed]
- Som, S.; Sharma, S.K.; Shripathi, T. Influences of Doping and Annealing on the Structural and Photoluminescence Properties of Y2O3 Nanophosphors. J. Fluoresc. 2013, 23, 439–450. [Google Scholar] [CrossRef]
- Dejene, F.; Ali, A.; Swart, H.; Botha, R.; Roro, K.; Coetsee, L.; Biggs, M. Optical properties of ZnO nanoparticles synthesized by varying the sodium hydroxide to zinc acetate molar ratios using a Sol-Gel process. Open Phys. 2011, 9, 1321–1326. [Google Scholar] [CrossRef]
- Atuchin, V.; Isaenko, L.; Kesler, V.; Lin, Z.; Molokeev, M.; Yelisseyev, A.; Zhurkov, S. Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite. J. Solid State Chem. 2012, 187, 159–164. [Google Scholar] [CrossRef]
- Reshak, A.H.; Alahmed, Z.A.; Bila, J.; Atuchin, V.V.; Bazarov, B.G.; Chimitova, O.D.; Molokeev, M.S.; Prosvirin, I.P.; Yelisseyev, A.P. Exploration of the Electronic Structure of Monoclinic α-Eu2(MoO4)3: DFT-Based Study and X-ray Photoelectron Spectroscopy. J. Phys. Chem. C 2016, 120, 10559–10568. [Google Scholar] [CrossRef]
- Jones, S.L.; Kumar, D.; Singh, R.K.; Holloway, P.H. Luminescence of pulsed laser deposited Eu doped yttrium oxide films. Appl. Phys. Lett. 1997, 71, 404–406. [Google Scholar] [CrossRef]
- Nunes, D.; Pimentel, A.; Matias, M.; Freire, T.; Araújo, A.; Silva, F.; Gaspar, P.; Garcia, S.; Carvalho, P.A.; Fortunato, E.; et al. Tailoring Upconversion and Morphology of Yb/Eu Doped Y2O3 Nanostructures by Acid Composition Mediation. Nanomaterials 2019, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Guzmán, G.; González, D.; Caro-Díaz, C.; Lillo-Arroyo, L.; Valenzuela-Melgarejo, F.; Triviño, G.C.; Buo-no-Core, G.E.; Chornik, B.; Huentupil, Y. Preliminary evaluation of the up-conversion emission of Y2O3:Er-Yb thin films prepared by a solid state photochemical deposition method. J. Lumin. 2018, 204, 401–409. [Google Scholar] [CrossRef]
- Ryba-Romanowski, W.; Golab, S.; Dominiak-Dzik, G.; Solarz, P.; Lukasiewicz, T. Conversion of infrared radiation into red emission in YVO4:Yb,Ho. Appl. Phys. Lett. 2001, 79, 3026–3028. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Molokeev, M.; Oreshonkov, A.; Atuchin, V. The modulated structure and frequency upconversion properties of CaLa2 (MoO4)4:Ho3+/Yb3+ phosphors prepared by microwave synthesis. Phys. Chem. Chem. Phys. 2015, 17, 19278–19287. [Google Scholar] [CrossRef]
- Lim, C.S.; Aleksandrovsky, A.; Molokeev, M.; Oreshonkov, A.; Atuchin, V. Microwave-Employed Sol–Gel Synthesis of Scheelite-Type Microcrystalline AgGd (MoO4)2:Yb3+/Ho3+ Upconversion Yellow Phosphors and Their Spectroscopic Properties. Crystals 2020, 10, 1000. [Google Scholar]
- Xiang, G.; Ma, Y.; Liu, W.; Jiang, S.; Luo, X.; Zhou, L.L.; Gu, Z.; Wang, J.; Luo, Y.; Zhang, Y.J. Improvement of Green Upconversion Monochromaticity by Doping Eu3+ in Lu2O3:Yb3+/Ho3+ Powders with Detailed Investigation of the Energy Transfer Mechanism. Inorg. Chem. 2017, 56, 9194–9199. [Google Scholar] [CrossRef]
- Dan, H.K.; Zhou, D.C.; Wang, R.F.; Jiao, Q.; Yang, Z.W.; Song, Z.G.; Yu, X.; Qiu, J.B. Energy transfer and upconversion emission of Tm3+/Tb3+/Yb3+ co-doped transparent glass-ceramics containing Ba2LaF7 nanocrystals. J. Non-Cryst. Solids 2013, 378, 181–185. [Google Scholar] [CrossRef]
- Li, J.-G.; Wang, X.; Liu, W.; Zhu, Q.; Li, X.; Sun, X. (La0.97RE0.01Yb0.02)2O2S Nanophosphors Converted from Layered Hydroxyl Sulfate and Investigation of Upconversion Photoluminescence (RE=Ho, Er). Nanoscale Res. Lett. 2017, 12, 508. [Google Scholar] [CrossRef]
- An, L.; Zhang, J.; Liu, M.; Wang, S. Up-conversion properties of Yb3+, Ho3+: Lu2O3 sintered ceramic. J. Lumin. 2007, 122–123, 125–127. [Google Scholar] [CrossRef]
- Kir’yanov, A.; Aboites, V.; Belovolov, A.; Damzen, M.; Minassian, A.; Timoshechkin, M.; Belovolov, M. Visible-to-near-IR luminescence at stepwise up-conversion in Yb,Ho:GGG under IR diode pumping. J. Lumin. 2003, 102–103, 715–721. [Google Scholar] [CrossRef]
- Runowski, M.; Woz, P.; Stopikowska, N.; Martín, I.R.; Lavín, V.; Lis, S. Optical pressure sensing in vacuum and high-pressure ranges using lanthanide-based luminescent thermometer–manometer. ASC Appl. Mater. Interfaces 2020, 12, 43933–43941. [Google Scholar] [CrossRef]
- Piotrowski, W.; Trejgis, K.; Maciejewska, K.; Ledwa, K.; Fond, B.; Marciniak, L. Thermochromic Luminescent Nanomaterials Based on Mn4+/Tb3+ Codoping for Temperature Imaging with Digital Cameras. ACS Appl. Mater. Interfaces 2020, 12, 44039–44048. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Jiang, S.; Wei, X.; Chen, Y.; Duan, C.; Yin, M. Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4. J. Alloys Compd. 2014, 588, 654–657. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, H.; Li, Y.; Zheng, L.; Zhang, Z.; Cao, W. Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4. Sens. Actuators B Chem. 2013, 188, 1096–1110. [Google Scholar] [CrossRef]
- Singh, P.; Yadav, R.S.; Singh, P.; Rai, S.B. Upconversion and downshifting emissions of Ho3+-Yb3+ co-doped ATiO3 perovskite phosphors with temperature sensing properties in Ho3+-Yb3+ co-doped BaTiO3 phosphor. J. Alloys Compd. 2021, 855, 157452. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Lei, R.; Wang, H.; Zhu, Q.; Wang, X.; Wu, Y.; Yang, Q.; Xu, S. Excellent photoluminescence and temperature sensing properties in Ho3+/Yb3+ codoped (Y0.88La0.09Zr0.03)2O3 transparent ceramics. Ceram. Int. 2019, 45, 7696–7702. [Google Scholar] [CrossRef]
- Hu, S.; Yuan, M.; Huang, H.; Song, C.; Han, K.; Cui, W.; Yang, Z.; Wang, H. Effect of Ce dopant on upconversion and temperature sensing performances in homogeneous ultrasmall Y2O3:Yb3+/Ho3+ nanoparticles through flame aerosol synthesis. Ceram. Int. 2013, 49, 10953–10960. [Google Scholar] [CrossRef]
- Lojpur, V.; Nikolic, M.; Mancic, L.; Milosevic, O.; Dramicanin, M.D. Y2O3:Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence. Ceram. Int. 2013, 39, 1129–1134. [Google Scholar] [CrossRef]
- Saidi, K.; Chaabani, W.; Dammak, M. Highly sensitive optical temperature sensing based on pump-power-dependent upconversion luminescence in LiZnPO4:Yb3+–Er3+/Ho3+ phosphors. RSC Adv. 2021, 11, 30926–30936. [Google Scholar] [CrossRef] [PubMed]
- Saidi, K.; Dammak, M.; Carracedo, K.S.; Martínb, I.R. A novel optical thermometry strategy based on emission of Tm3+/Yb3+ codoped Na3GdV2O8 phosphors. Dalton Trans. 2022, 51, 5108–5117. [Google Scholar] [CrossRef]
- Stopikowska, N.; Runowski, M.; Wo’zny, P.; Goderski, S.; Lis, S. Improving temperature resolution of luminescent nanothermometers working in the near-infrared range using non-thermally coupled levels of Yb3+ & Tm3+. J. Lumin. 2020, 228, 117643. [Google Scholar]
Sample | Bandgap (eV) |
---|---|
Y2O3 | 5.74 |
Y2−x−yO3:Hox=0.005 | 5.72 |
Y2−x−yO3:Hox=0.005, Yby=0.006 | 5.68 |
Y2−x−yO3:Hox=0.005, Yby=0.2 | 5.61 |
Sample | Average Lifetime (µs) |
---|---|
Y2−xO3:Hox=0.005 | 254 |
Y2−x−yO3:Hox=0.005, Yby=0.002 | 241 |
Y2−x−yO3:Hox=0.005, Yby=0.006 | 226 |
Y2−x−yO3:Hox=0.005, Yby=0.01 | 223 |
Y2−x−yO3:Hox=0.005, Yby=0.05 | 92 |
Y2−x−yO3:Hox=0.005, Yby=0.1 | 99 |
Y2−x−yO3:Hox=0.005, Yby=0.2 | 121 |
Sample | Transitions | Temp Range (K) | Max SA (K−1) | Max SR (%K−1) | Ref. |
---|---|---|---|---|---|
Ho, Yb: Y2O3 | 5F4, 5S2 → 5I8, 5F5 → 5I8 5S2 → 5I8, 5F5 → 5I8 | 303–623 | 0.08 - | - 0.64 | This work |
Ho, Yb: LuYO3 | 5F4, 5S2 → 5I8, 5F5 → 5I8 | 298–578 | 0.1603 | 0.0102 | [24] |
Ho, Yb: NaLuF4 | 5F2,3,5K8 → 5I8, 5G6, 5F1 → 5I8 | 390–780 | 0.0008 | 0.83 | [46] |
Ho, Yb: CaWO4 | 5F2,3,5K8 → 5I8, 5G6, 5F1 → 5I8 | 303–923 | 0.0050 | 0.28 | [47] |
Ho, Yb: NaYF4 | 5F4, 5S2 → 5I8 | 313–393 | 0.0038 | 0.7230 | [48] |
Ho, Yb: Y2O3 | 5F4, 5S2 → 5I8 | 293–563 | 0.0071 | - | [49] |
Ho, Yb: Y2O3 | 5F4, 5S2 → 5I8 | 348–598 | 0.013 | 0.622 | [50] |
Ho, Yb: Y2O3 | 5F4, 5S2 → 5I8, 5S2, 5F4 → 5I7 | 0–300 | 0.0097 | 1.90 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makumbane, V.; Yagoub, M.Y.A.; Xia, Z.; Kroon, R.E.; Swart, H.C. Up-Conversion Luminescence and Optical Temperature Sensing Behaviour of Y2O3:Ho3+, Yb3+ Phosphors. Crystals 2023, 13, 1288. https://doi.org/10.3390/cryst13081288
Makumbane V, Yagoub MYA, Xia Z, Kroon RE, Swart HC. Up-Conversion Luminescence and Optical Temperature Sensing Behaviour of Y2O3:Ho3+, Yb3+ Phosphors. Crystals. 2023; 13(8):1288. https://doi.org/10.3390/cryst13081288
Chicago/Turabian StyleMakumbane, Vhahangwele, Mubarak Y. A. Yagoub, Zhiguo Xia, Robin E. Kroon, and Hendrik C. Swart. 2023. "Up-Conversion Luminescence and Optical Temperature Sensing Behaviour of Y2O3:Ho3+, Yb3+ Phosphors" Crystals 13, no. 8: 1288. https://doi.org/10.3390/cryst13081288