Multiple-Layer Triangular Defects in 4H-SiC Homoepitaxial Films Grown by Chemical Vapor Deposition
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Composition of Defect
3.2. Microstructure
3.3. Influence Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, M.; Girish, Y.R.; Rakesh, K.P.; Wu, P.; Manu Kumar, H.M.; Byrappa, S.M.; Udayabhanu; Byrappa, K. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications. Mater. Today Commun. 2021, 28, 102533. [Google Scholar] [CrossRef]
- Kaloyeros, A.E.; Goff, J.; Arkles, B. Defect- and H-Free Stoichiometric Silicon Carbide by Thermal CVD from the Single Source Precursor Trisilacyclohexane. Electron. Mater. 2022, 3, 27–40. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Y.; Xia, X.; Wang, Y.; Zhou, P.; Li, Z. Growth of high-quality 4H-SiC epitaxial layers on 4° off-axis C-face 4H-SiC substrates. J. Cryst. Growth 2020, 531, 125355. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Z.; Song, S.; Gao, X.; Deng, W. Investigation on Material Removal Mechanisms in Photocatalysis-Assisted Chemical Mechanical Polishing of 4H–SiC Wafers. Int. J. Precis. Eng. Manuf. 2021, 22, 951–963. [Google Scholar] [CrossRef]
- Wellmann, P.J. Review of SiC Crystal Growth Technology. Semicond. Sci. Technol. 2018, 33, 103001. [Google Scholar] [CrossRef]
- Matsunami, H. Fundamental research on semiconductor SiC and its applications to power electronics. Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci. 2020, 96, 235–254. [Google Scholar] [CrossRef]
- Dong, L.; Sun, G.S.; Yu, J.; Zheng, L.; Liu, X.F.; Zhang, F.; Yan, G.G.; Li, X.G.; Wang, Z.G.; Yang, F. Characterization of Obtuse Triangular Defects on 4H-SiC 4° off-Axis Epitaxial Wafers. Chin. Phys. Lett. 2013, 30, 96105. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Mandal, K. Radiation Detection Using n-Type 4H-SiC Epitaxial Layer Surface Barrier Detectors. In Advanced Materials for Radiation Detection; Springer: Berlin/Heidelberg, Germany, 2022; pp. 183–209. ISBN 978-3-030-76461-6. [Google Scholar]
- Napoli, M.D. SiC detectors: A review on the use of silicon carbide as radiation detection material. Front. Phys. 2022, 10, 769. [Google Scholar] [CrossRef]
- Mandal, K.C.; Krishna, R.; Muzykov, P.G.; Laney, Z.; Sudarshan, T.S. Radiation Detectors Based on 4H Semi-Insulating Silicon Carbide. In Proceedings of the International Society for Optics and Photonics, Wuhan, China, 2–5 November 2010; Volume 7805, pp. 158–165. [Google Scholar]
- Saitoh, H.; Kimoto, T. 4H-SiC Epitaxial Growth on SiC Substrates with Various Off-Angles. In Proceedings of the Materials Science Forum, Boston, MA, USA, 28 November–2 December 2005; Volume 483, pp. 89–92. [Google Scholar]
- Kimoto, T.; Yonezawa, Y. Current status and perspectives of ultrahigh-voltage SiC power devices. Mater. Sci. Semicond. Process. 2018, 78, 43–56. [Google Scholar] [CrossRef]
- Pedersen, H.; Leone, S.; Kordina, O.; Henry, A.; Nishizawa, S.-i.; Koshka, Y.; Janzén, E. Chloride-Based CVD Growth of Silicon Carbide for Electronic Applications. Chem. Rev. 2012, 112, 2434–2453. [Google Scholar] [CrossRef]
- Liu, X.F.; Yan, G.G.; Liu, B.; Shen, Z.W.; Wen, Z.X.; Chen, J.; Zhao, W.S.; Wang, L.; Zhang, F.; Sun, G.S.; et al. Process optimization for homoepitaxial growth of thick 4H-SiC films via hydrogen chloride chemical vapor deposition. J. Cryst. Growth 2018, 504, 7–12. [Google Scholar] [CrossRef]
- La Via, F.; Camarda, M.; La Magna, A. Mechanisms of growth and defect properties of epitaxial SiC. Appl. Phys. Rev. 2014, 1, 031301. [Google Scholar] [CrossRef]
- Fujiwara, H.; Naruoka, H.; Konishi, M.; Hamada, K.; Katsuno, T.; Ishikawa, T.; Watanabe, Y.; Endo, T. Impact of Surface Morphology above Threading Dislocations on Leakage Current in 4H-SiC Diodes. Appl. Phys. Lett. 2012, 101, 042104. [Google Scholar] [CrossRef]
- Taishi, T.; Hoshikawa, T.; Yamatani, M.; Shirasawa, K.; Huang, X.; Uda, S.; Hoshikawa, K. Influence of crystalline defects in Czochralski-grown Si multicrystal on minority carrier lifetime. J. Cryst. Growth 2007, 306, 452–457. [Google Scholar] [CrossRef]
- Zhao, L. Surface defects in 4H-SiC homoepitaxial layers. Nanotechnol. Precis. Eng. 2020, 3, 229–234. [Google Scholar] [CrossRef]
- Hu, J.; Jia, R.; Xin, B.; Peng, B.; Wang, Y.; Zhang, Y. Effect of Low Pressure on Surface Roughness and Morphological Defects of 4H-SiC Epitaxial Layers. Materials 2016, 9, 743. [Google Scholar] [CrossRef]
- Niu, Y.X.; Tang, X.Y.; Jia, R.X.; Sang, L.; Hu, J.C.; Yang, F.; Wu, J.M.; Pan, Y.; Zhang, Y.M. Influence of Triangle Structure Defect on the Carrier Lifetime of the 4H-SiC Ultra-Thick Epilayer. Chin. Phys. Lett. 2018, 35, 077103. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Ivanov, I.G.; Suwannaharn, N.; Hsu, C.-W.; Cora, I.; Pécz, B.; Giannazzo, F.; Sangiovanni, D.G.; Gueorguiev, G.K. MOCVD of AlN on epitaxial graphene at extreme temperatures. CrystEngComm 2021, 23, 385–390. [Google Scholar] [CrossRef]
- Sangiovanni, D.G.; Faccio, R.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface. Phys. Chem. Chem. Phys. 2022, 25, 829–837. [Google Scholar] [CrossRef]
- Wu, P.; Emorhokpor, E.; Yoganathan, M.; Kerr, T.; Zhang, J.; Romano, E.; Zwieback, I. Dislocation in 4H n+ SiC Substrates and their Relationship with Epilayer Defects. In Proceedings of the Materials Science Forum, Boston, MA, USA, 26–30 November 2007; Volume 556, pp. 247–250. [Google Scholar]
- Matsunami, H.; Kimoto, T. Step-controlled epitaxial growth of SiC: High quality homoepitaxy. Mater. Sci. Eng. R Rep. 1997, 20, 125–166. [Google Scholar] [CrossRef]
- Hallin, C.; Konstantinov, A.O.; Pécz, B.; Kordina, O.; Janzén, E. The origin of 3C polytype inclusions in epitaxial layers of silicon carbide grown by chemical vapour deposition. Diam. Relat. Mater. 1997, 6, 1297–1300. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, H. A correlation study of substrate and epitaxial wafer with 4H-N type silicon carbide. J. Cryst. Growth 2019, 507, 109–112. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Yu, L.; Wang, Y.; Zhou, P.; Niu, Y.; Li, Z.; Chen, Y.; Han, P. Reduction of morphological defects in 4H-SiC epitaxial layers. J. Cryst. Growth 2019, 506, 108–113. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Yan, G.; Shen, Z.; Zhao, W.; Wang, L.; Liu, X. Investigation on Step-Bunched Homoepitaxial Layers Grown on On-Axis 4H-SiC Substrates via Molten KOH Etching. Crystals 2022, 12, 788. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Y.; Yuan, W.; Guo, N.; Li, Y.; Zhang, X.; Liu, X. Multiple-Layer Triangular Defects in 4H-SiC Homoepitaxial Films Grown by Chemical Vapor Deposition. Crystals 2023, 13, 1056. https://doi.org/10.3390/cryst13071056
Pei Y, Yuan W, Guo N, Li Y, Zhang X, Liu X. Multiple-Layer Triangular Defects in 4H-SiC Homoepitaxial Films Grown by Chemical Vapor Deposition. Crystals. 2023; 13(7):1056. https://doi.org/10.3390/cryst13071056
Chicago/Turabian StylePei, Yicheng, Weilong Yuan, Ning Guo, Yunkai Li, Xiuhai Zhang, and Xingfang Liu. 2023. "Multiple-Layer Triangular Defects in 4H-SiC Homoepitaxial Films Grown by Chemical Vapor Deposition" Crystals 13, no. 7: 1056. https://doi.org/10.3390/cryst13071056
APA StylePei, Y., Yuan, W., Guo, N., Li, Y., Zhang, X., & Liu, X. (2023). Multiple-Layer Triangular Defects in 4H-SiC Homoepitaxial Films Grown by Chemical Vapor Deposition. Crystals, 13(7), 1056. https://doi.org/10.3390/cryst13071056