Dy–Al–Si System: Experimental Study of the Liquid–Solid Phase Equilibria in the Al-Rich Corner
Abstract
:1. Introduction
Binary Boundary Systems and Ternary Intermetallic Compounds
2. Materials and Methods
2.1. Materials and Sample Synthesis
2.2. Samples Characterization
3. Results and Discussion
3.1. (Si) and DyAlxSi(2−x) Primary Solidification Field—Samples n.1–n.5
3.2. Dy2Al3Si2 and DyAl(3−x)Six Primary Solidification Field-Samples n.6 – n.10
- Three invariant ternary transitions have been identified:
- Ternary eutectic: L(0.5at%Dy, 75.0at%Al) ⇄ DyAl2Si2 + (Al) + (Si) at 566 °C;
- U1: L+ DyAl3 ⇄ Dy2Al3Si2 + (Al) at 630 °C;
- U2: L+ Dy2Al3Si2 ⇄ DyAl2Si2 +(Al) 562 °C.
- There is one binary eutectic reaction located in the ternary field:
- L(2.0at%Dy, 94.0at%Al) ⇄ DyAl2Si2 + (Al) at 630 °C.
- There is one binary peritectic reaction located in the ternary field:
- + DyAlxSi(2−x) ⇄ DyAl2Si2 at 632 °C.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manani, S.; Pradhan, A.K. Effects of melt thermal treatment on cast Al-Si alloys: A review. Mater. Today Proc. 2022, 62, 6568–6572. [Google Scholar] [CrossRef]
- Nikanorov, S.P.; Osipov, V.N.; Regel, L.I. Structural and mechanical properties of directionally solidified Al-Si alloys. J. Mater. Eng. Perform. 2019, 28, 7302–7323. [Google Scholar] [CrossRef]
- Kayitmazbatir, M.; Lien, H.-H.; Mazumder, J.; Wang, J.; Misra, A. Effect of Cooling Rate on Nano-Eutectic Formation in Laser Surface Remelted and Rare Earth Modified Hypereutectic Al-20Si Alloys. Crystals 2022, 12, 750. [Google Scholar] [CrossRef]
- Osinskaya, J.V.; Pokoev, A.V.; Magamedova, S.G. Influence of the intensity of a constant magnetic field on the process of phase formation in an aged aluminium alloy Al-Si-Cu-Fe. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2022, 16, 159–162. [Google Scholar] [CrossRef]
- Ervina Efzan, M.N.; Kong, H.J.; Kok, C.K. Review: Effect of alloying element on Al-Si alloys. Adv. Mat. Res. 2014, 845, 355–359. [Google Scholar] [CrossRef]
- Beolchini, F.; Pagnanelli, F.; Reverberi, A.P.; Vegliò, F. Copper biosorption onto Rhizopus oligosporus: pH-edge tests and related kinetic and equilibrium modeling. Ind. Eng. Chem. Res. 2003, 42, 4881–4887. [Google Scholar] [CrossRef]
- Chankitmunkong, S.; Eskin, D.G.; Limmaneevichitr, C. Effect of Cu addition on the microstructure, mechanical and thermal properties of a piston Al-Si alloy. In Proceedings of the Minerals, Metals and Materials Series, Light Metals Symposium held at the TMS Annual Meeting and Exhibition, San Antonio, TX, USA, 10–14 March 2019; pp. 463–469, Code 224839. [Google Scholar]
- Gursoy, O.; Timelli, G. Lanthanides: A focused review of eutectic modification in hypoeutectic Al-Si alloys. J. Mater. Res. Technol 2020, 9, 8652–8666. [Google Scholar] [CrossRef]
- Slattery, B.E.; Perry, T.; Edrisy, A. Microstructural evolution of a eutectic Al-Si engine subjected to severe running conditions. Mat. Sci. Eng. 2009, 512, 76–81. [Google Scholar] [CrossRef]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent development in aluminum alloys for the automotive industry. Mat. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Zhu, M.; Jian, Z.; Yao, L.; Liu, C.; Yang, G.; Zhou, Y. Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al-7.0%Si-0.3%Mg foundry aluminum alloys. J. Mater. Sci. 2011, 46, 2685–2694. [Google Scholar] [CrossRef]
- Mazahery, A.; Shabani, M.O. Modification Mechanism and Microstructural Characteristics of Eutectic Si in Casting Al-Si Alloys: A Review on Experimental and Numerical Studies. J. Miner. Met. Mater. Soc. 2014, l66, 726–738. [Google Scholar] [CrossRef]
- Traverso, P.; Spiniello, R.; Monaco, L. Corrosion Inhibition of Al 6061T6/Al2O3p 10% (v/v) composite in 3.5% NaCl solution with addition of cerium (III) chloride. Surf. Interface Anal. 2002, 34, 185–188. [Google Scholar] [CrossRef]
- Heusler, L.; Schneider, W. Influence of alloying elements on the thermal analysis results of Al-Si cast alloys. J. Light Metals 2002, 2, 17–26. [Google Scholar] [CrossRef]
- Qiu, H.; Yan, H.; Hu, Z. Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys. J. Alloys Compd. 2013, 567, 77–81. [Google Scholar] [CrossRef]
- Nogita, K.; Yasuda, H.; Yoshiya, M.; McDonald, S.D.; Uesugi, K.; Tacheuchi, A.; Suzuki, Y. The role of trace element segregation in the eutectic modification of hypoeutectic Al-Si alloys. J. Alloys Comp. 2010, 489, 415–420. [Google Scholar] [CrossRef]
- Cardinale, A.M.; Macciò, D.; Luciano, G.; Canepa, E.; Traverso, P. Thermal and corrosion behavior of as cast Al-Si alloys with rare earth. J. Alloys Compd. 2016, 695, 2180–2189. [Google Scholar] [CrossRef]
- Li, Q.; Li, B.; Li, J.; Zhu, Y.; Xia, T. Effect of yttrium addition on the microstructures and mechanical properties of hypereutectic Al-20Si alloy. Mater. Sci. Eng. A 2018, 722, 47–57. [Google Scholar] [CrossRef]
- Mahmoud, M.G.; Samuel, A.M.; Doty, H.W.; Valtierra, S.; Samuel, F.H. Effect of Solidification Rate and Rare Earth Metal Addition on the Microstructural Characteristics and Porosity Formation inA356 Alloy. Adv. Mater. Sci. Eng. 2017, 2017, 5086418. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, R.; Asmael, M.B.A.; Shahizan, N.R.; Gandouz, S. Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition. Int. J. Miner. Metall. Mater. 2017, 24, 91–101. [Google Scholar] [CrossRef]
- Cardinale, A.M.; Parodi, N. R-Al-Si systems (R: Pr,Nd): Experimental investigation of phase equilibria in the Al-rich corner. J. Therm. Anal. Calorim. 2018, 134, 1327–1335. [Google Scholar] [CrossRef]
- Markoli, B.; Spaic, S.; Zupanic, F. The constitution of alloys in the Al-rich corner of the Al-Si-Sm ternary system. Z. Met. 2001, 92, 1098–1102. [Google Scholar]
- Cardinale, A.M.; Macciò, D.; Saccone, A. Phase Relationships of the R-Al-Si Systems: The Pr-Al-Si Isothermal Section at 500 °C. J. Therm. Anal. Calorim 2015, 121, 1151–1157. [Google Scholar] [CrossRef]
- Cardinale, A.M.; Macciò, D.; Saccone, A. Phase equilibria in the Sm–Al–Si system at 500 °C. J. Therm. Anal. Calorim. 2014, 116, 61–67. [Google Scholar] [CrossRef]
- Pukas, S.; Lasocha, W.; Gladyshevskii, R. Phase equilibria in the Er-Al-Si system at 873 K. Calphad 2009, 33, 23–26. [Google Scholar] [CrossRef]
- Murray, J.L.; McAlister, A.J. The Al-Si (Aluminum-Silicon) system. Bull. Alloy. Phase Diagrams 1984, 5, 74–84. [Google Scholar] [CrossRef]
- Okamoto, H. Supplemental Literature Review of Binary Phase Diagrams: Al-Bi, Al-Dy, Al-Gd, Al-Dy, C-Mn, Co-Ga, Cr-Hf, Cr-Na, Er-H, Er-Zr, H-Zr, and Ni-Pb. J. Phase Equilibria Diffus. 2014, 35, 343–354. [Google Scholar] [CrossRef]
- Kim, J.; Jung, I.H. Critical evaluation and thermodynamic optimization of the Si-RE systems: Part II. Si-RE system (RE= Gd, Dy, Dy, Ho, Er, Tm, Lu and Y). J. Chem. Thermodyn. 2015, 81, 273–297. [Google Scholar] [CrossRef]
- Cardinale, A.M.; Parodi, N.; Saccone, A. The 500 °C isothermal section of the Dy–Al–Si system and thermal behavior of selected Al-rich alloys. J. Therm. Anal Calorim. 2012, 108, 817–823. [Google Scholar] [CrossRef]
- Villars, P.; Cenzual, K. Pearson’s Crystal Data–Crystal Structure Database for Inorganic Compounds, Release 2021/22; ASM International: Materials Park, OH, USA, 2022. [Google Scholar]
- Van Vucht, J.H.N.; Buschow, K.H.J. On the binary aluminium-rich compounds of the rare-earth elements. Philips Res. Rep. 1964, 19, 319–322. [Google Scholar]
- Baenziger, N.C.; Hegenbarth, J.J. Gadolinium and dysprosium intermetallic phases. III. The structures of Gd3Al2, Dy3Al2, Gd5Ge3, Dy5Ge3 and DyAl3. Acta Crystallogr. 1964, 17, 620–621. [Google Scholar] [CrossRef] [Green Version]
- Mayer, I.; Felner, I. High- temperature x-ray study of rare-earth silicides. J. Less Comm. Met. 1972, 29, 25–31. [Google Scholar] [CrossRef]
- Holtzberg, F.; Gambino, R.J.; McGuire, T.R. New ferromagnetic 5:4 compounds in the rare earth silicon and germanium systems. J. Phys Chem Solids 1967, 28, 2283–2289. [Google Scholar] [CrossRef]
- Hohnke, D.; Parthè, E. AB Compounds with Sc, Y and Rare Earth Metals. II. FeB and CrB Type Structures of Monosilicides and Germanides. Acta Cryst. 1966, 20, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Roger, J.; Guizouarn, T.; Hiebl, K.; Halet, J.F.; Guérin, R. Structural chemistry and physical properties of the rare earth silicide Dy3Si4. J. Alloys Compd. 2005, 394, 28–34. [Google Scholar] [CrossRef]
- Iandelli, A.; Palenzona, A.; Olcese, G.L. valence fluctuations of ytterbium in silicon-rich compounds. J. Less-Common Met. 1979, 64, 213–220. [Google Scholar] [CrossRef]
- Perri, J.A.; Banks, E.; Post, B. polymorphism of rare earth disilicides. Phys. Chem. 1959, 63, 2073–2074. [Google Scholar] [CrossRef]
- Kranenberg, C.; Johrendt, D.; Mewis, A. Investigations about the Stability Range of the CaAl2Si2 Type Structure in the Case of Ternary Silicides. Z. Anorg. Allg. Chem. 1999, 625, 1787–1793. [Google Scholar] [CrossRef]
- Bobev, S.; Tobash, P.H.; Fritsch, V.; Thompson, J.D.; Hundley, M.F.; Sarrao, J.L.; Fisk, Z. Ternary rare-earth alumino-silicides-single-crystal growth from Al flux, structural and physical properties. J. Solid State Chem. 2005, 178, 2091–2103. [Google Scholar] [CrossRef] [Green Version]
- Dubenko, I.S.; Evdokimov, A.A.; Ionov, V.M. Crystal structure of Dy6Al3Si. Sov. Phys. Crystallogr. 1987, 32, 201–203. [Google Scholar]
- Pukas, S.; Lutsyshyn, Y.; Manyako, M.; Gladyshevskii, E. Crystal structures of the RAlSi and RAlGe compounds. J. Alloys Compd. 2004, 367, 162–166. [Google Scholar] [CrossRef]
- He, W.; Zhang, J.; Zeng, L. New structure of the ternary compound DyAlSi. J. Alloys Compd. 2006, 424, 105–107. [Google Scholar] [CrossRef]
- Nolze, G.; Kraus, W. Powder Cell for Windows; Federal Institute for Materials Research and Testing: Berlin, Germany, 1999. [Google Scholar]
- King, G. Schwarzenbach LatconD. Xtal3.7 System; Hall, S.R., du Boilay, D.J., Olthof-Hazekamp, R., Eds.; University of Western Australia: Crawley, Australia, 2000. [Google Scholar]
- Meschel, S.V.; Kleppa, O.J. Standard enthalpies of formation of some carbides, silicides, germanides, stannides and borides of Dysprosium by high temperature direct synthesis calorimetry. J. Alloys Compd. 1996, 233, 272–278. [Google Scholar] [CrossRef]
Phase | Crystal Structure—Prototype | Remarks | Refs. |
---|---|---|---|
Al | cF4-Cu | [30] | |
Si | cF8-Cdiamond | [30] | |
βDy | cI2-W | T < 1657 °C | [30] |
αDy | hP2-Mg | 1384 < T > 1412 °C | |
βDyAl3 | hR60-HoAl3 | T > 1005 °C | [31] |
αDyAl3 | hP16-TiNi3 | T< 1005 °C | [32] |
DyAl2 | cF24-MgCu2 | [29] | |
DyAl | oP16-AlEr | [29] | |
Dy3Al2 | tP20-Al2Zr3 | [29] | |
Dy2Al | oP12-Co2Si | [29] | |
Dy5Si3 | hP16-Mn5Si3 | [33] | |
Dy5Si4 | oP36-Sm5Ge4, | [34] | |
βDySi(1−x) | oP8-FeB | 800 < T < 1890 | [35] |
αDySi | oC8-CrB | T < 800 | [35] |
Dy3Si4 | oS24-Ho3Si4 | [36] | |
βDySi1.67 | hP3-AlB2 | 760 °C < T < 1635 °C | [37] |
DySi1.67 | oI12-GdSi2 | T < 760 °C | [30] |
βDySi2 | tI12-ThSi2 | 540 °C < T<1430 °C | [38] |
αDySi2 | oI12-GdSi2 | T < 540 °C | [30] |
DyAl2Si2 | hP5-CaAl2O2 | [39] | |
Dy2Al3Si2 | mS14-Y2Al3Si2 | [40] | |
Dy6Al3Si | tI80-Dy6Al3Si | [41] | |
DyAlSi | oS12-YAlGe | (T = 600 °C) | [42] |
tI10-αThSi2 | (T = 700 °C) | [43] |
Sample Code | Composition Dy, Al, Si/at% | Liquidus | Primary Phase | Other Effects | Character |
---|---|---|---|---|---|
1 | 1.0, 41.5, 57.5 | 971 | (Si) | 639 570 565 | L + (Si) ⇆ DyAl2Si2 L ⇆ (Si) L ⇆ (Al)+ (Si) + DyAl2Si2 |
2 | 6.5, 36.0, 57.5 | 989 | DyAlxSi(2−x) | 640 601 570 | L + DyAlxSi(2−x)⇆ DyAl2Si2 L ⇆ (Si) L ⇆ (Al)+ (Si) + DyAl2Si2 |
3 | 3.5, 48.0, 48.5 | 827 | DyAlxSi(2−x) | 629 586 562 | L + DyAlxSi(2−x)⇆ DyAl2Si2 L ⇆ (Si) L ⇆ (Al)+ (Si) + DyAl2Si2 |
4 | 2.0, 55.5, 42.5 | 795 | DyAlxSi(2−x) | 638 625 566 | L + DyAlxSi(2−x)⇆ DyAl2Si2 L ⇆ (Si) L ⇆ (Al)+ (Si) + DyAl2Si2 |
5 | 3.5, 68.5, 28.0 | 833 | DyAlxSi(2−x) | 623 566 | L + DyAlxSi(2−x)⇆ DyAl2Si2 L ⇆ DyAl2Si2 +(Al)+ (Si) |
6 | 10.5, 78.5, 11.0 | 946 | Dy2Al3Si2 | 620 556 | L ⇆ (Al) + DyAl2Si2 L+ Dy2Al3Si2⇆ DyAl2 Si2 + (Al) |
7 | 9.5, 81.5, 9.0 | 983 | Dy2Al3Si2 | 630 568 | L ⇆ (Al) + DyAl2Si2 L+ Dy2Al3Si2⇆ DyAl2 Si2 + (Al) |
8 | 4.5, 90.5, 5.0 | 898 | Dy2Al3Si2 | 631 560 | L ⇆ (Al) + DyAl2Si2 L + Dy2Al3Si2⇆ DyAl2Si2 +(Al) |
9 | 2.5, 94.0, 3.5 | 669 | Dy2Al3Si2 | 628 562 | L ⇆ (Al)+ DyAl2Si2 L + Dy2Al3Si2⇆ (Al) + DyAl2Si2 |
10 | 16.5, 79.0, 4.5 | 1018 | DyAl(3−x)Six | 630 | L + DyAl(3−x)Six ⇆ (Al)+ Dy2Al3Si2 |
Sample Code | Composition Dy, Al, Si/at% | Phase and Crystal Structure | EDX Results | Lattice Parameters/nm | |||
---|---|---|---|---|---|---|---|
Dy, Al, Si/at% | a | b | c | β/° | |||
1 | 1.0, 41.5, 57.5 | DyAl2Si2 hP5-CaLa2O2 (Si) cF8 C (diamond) (Al) cF4-Cu | 21.0, 40.0, 39.0 0, 0, ~100 0, ~100, 0 | 0.4174(1) 0.5422(1) 0.4043(3) | 0.6613(2) | ||
2 | 6.5, 36.0, 57.5 | DyAlx Si(2−x) o I12-GdSi2 DyAl2Si2 hP5-CaLa2O2 (Si) cF8 C (diamond) (Al) cF4-Cu | 37.0, 3.5, 59.5 20.5, 40.0, 39.5 0, 0, ~100 0, ~100, 0 | 0.3942(2) 0.4172(1) 0.5420(4) 0.4048(3) | 0.4014(2) | 1.3311(1) 0.6518(4) | |
3 | 3.5, 48.0, 48.5 | DyAlx Si(2−x) o I12-GdSi2 DyAl2Si2 hP5-CaLa2O2 (Si) cF8 C (diamond) (Al) cF4-Cu | 36.5, 3.5, 60.0 21.0, 40.0, 39.0 0, 0, ~100 0, ~100, 0 | 0.3934(5) 0.4158(3) 0.5426(2) 0.4045(1) | 0.4042(2) | 1.3334(8) 0.6563(6) | |
4 | 2.0, 55.5, 42.5 | DyAlx Si(2−x) o I12-GdSi2 DyAl2Si2 hP5-CaLa2O2 (Si) cF8 C (diamond) (Al) cF4-Cu | 38.0, 4.0, 58.0 21.0, 40.0, 39.0 0, 0, ~100 0, ~100, 0 | 0.3932(3) 0.4156(2) 0.5428(1) 0.4042(2) | 0.4041(2) | 1.3330(4) 0.6565(3) | |
5 | 3.5, 68.5, 28.0 | DyAlx Si(2−x) o I12-GdSi2 DyAl2Si2 hP5-CaLa2O2 (Si) cF8 C (diamond) (Al) cF4-Cu | 36.5, 3.5, 60.0 20.5, 40.0, 39.5 0, 0, ~100 0, ~100, 0 | 0.3935(3) 0.4156(5) 0.5422(4) 0.4043(1) | 0.4043(3) | 1.3333(4) 0.6564(6) | |
6 | 10.5, 78.5, 11.0 | Dy2Al3Si2 mS14-Y2Al3Si2 DyAl2Si2 hP5-CaLa2O2 (Al) cF4-Cu | 29.0, 42.5, 28.5 20.5, 41.0, 38.5 0, ~100, 0 | 1.0128(6) 0.4150(2) 0.4076(7) | 0.4026(2) | 0.6578(6) 0.6563(6) | 100.9 |
7 | 9.5, 81.5, 9.0 | Dy2Al3Si2 mS14-Y2Al3Si2 DyAl2Si2 hP5-CaLa2O2 (Al) cF4-Cu | 29.0, 43.0, 28.0 19.0, 41.5, 39.5 0, ~100, 0 | 1.0150(4) 0.4173(2) 0.4030(2) | 0.3968(3) | 0.6540(2) 0.6465(4) | 101.0 |
8 | 4.5, 90.5, 5.0 | Dy2Al3Si2 mS14-Y2Al3Si2 DyAl2Si2 hP5-CaLa2O2 (Al) cF4-Cu | 31.0, 42.0, 27.0 21.5, 39.5, 39.0 0, ~100, 0 | 1.0130(6) 0.4152(5) 0.4066(8) | 0.4022(4) | 0.6572(1) 0.6469(6) | 100.9 |
9 | 2.5, 94.0, 3.5 | Dy2Al3Si2 mS14-Y2Al3Si2 DyAl2Si2 hP5-CaLa2O2 (Al) cF4-Cu | 27.5, 46.5, 26.0 20.5, 40.0, 39.5 0, ~100, 0 | 1.0134(6) 0.4153(2) 0.4048(2) | 0.4028(4) | 0.6568(5) 0.6497(3) | 100.0 |
10 | 16.5, 79.0, 4.5 | DyAl(3−x)Six hP16-TiNi3 (Al) cF4-Cu | 26.0, 68.0, 6.0 0, ~100, 0 | 0.6097(3) 0.4054(1) | 0.9556(8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardinale, A.M.; Parodi, N. Dy–Al–Si System: Experimental Study of the Liquid–Solid Phase Equilibria in the Al-Rich Corner. Crystals 2023, 13, 1028. https://doi.org/10.3390/cryst13071028
Cardinale AM, Parodi N. Dy–Al–Si System: Experimental Study of the Liquid–Solid Phase Equilibria in the Al-Rich Corner. Crystals. 2023; 13(7):1028. https://doi.org/10.3390/cryst13071028
Chicago/Turabian StyleCardinale, Anna Maria, and Nadia Parodi. 2023. "Dy–Al–Si System: Experimental Study of the Liquid–Solid Phase Equilibria in the Al-Rich Corner" Crystals 13, no. 7: 1028. https://doi.org/10.3390/cryst13071028
APA StyleCardinale, A. M., & Parodi, N. (2023). Dy–Al–Si System: Experimental Study of the Liquid–Solid Phase Equilibria in the Al-Rich Corner. Crystals, 13(7), 1028. https://doi.org/10.3390/cryst13071028