Two-Dimensional Lattices with Lanthanoids, Anilato Ligands and Formamide
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Synthesis and IR Spectra
3.2. Crystal Structure of [Ln2(C6O4X2)3(fma)6]·6fma with Ln/X = La/Cl(1), La/Br(2), Eu/Cl(3), and Eu/Br(4)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Batten, S.R.; Champness, N.R.; Chen, X.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Terminology of metal–organic Frameworks and Coordination Polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, Z.; Liu, X.; Hanna, S.L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O.K. A Historical Overview of the Activation and Porosity of metal–organic Frameworks. Chem. Soc. Rev. 2020, 49, 7406–7427. [Google Scholar] [CrossRef]
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, Y.; Li, D.; Bu, X.; Feng, P. Metal–Organic Frameworks for Separation. Adv. Mater. 2018, 30, 1705189. [Google Scholar] [CrossRef] [PubMed]
- Shu-Na, Z.; Wang, G.; Poelman, D.; Van Der Voort, P. Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules 2018, 23, 2947. [Google Scholar]
- Li, H.; Zhao, S.; Zang, S.; Li, J. Functional metal–organic Frameworks as Effective Sensors of Gases and Volatile Compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef] [PubMed]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal-Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef]
- Campbell, M.G.; Dinca, M. Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors 2017, 17, 1108. [Google Scholar] [CrossRef] [Green Version]
- Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Water Adsorption in MOFs: Fundamentals and Applications. Chem. Soc. Rev. 2014, 43, 5594–5617. [Google Scholar] [CrossRef] [Green Version]
- Marin, R.; Brunet, G.; Murugesu, M. Shining New Light on Multifunctional Lanthanide Single-Molecule Magnets. Angew. Chem. Int. Ed. 2021, 60, 1728–1746. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.; Carlos, L.D.; Paz, F.A.A.; Ananias, D. Luminescent Multifunctional Lanthanides-Based metal–organic Frameworks. Chem. Soc. Rev. 2011, 40, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, G.; Park, I.; Medishetty, R.; Vittal, J.J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Dong, R.; Feng, X. Two-Dimensional Conjugated metal–organic Frameworks (2D c-MOFs): Chemistry and Function for MOFtronics. Chem. Soc. Rev. 2021, 50, 2764–2793. [Google Scholar] [CrossRef]
- Benmansour, S.; Vallés-García, C.; Gómez-Claramunt, P.; Mínguez Espallargas, G.; Gómez-García, C.J. 2D and 3D Anilato-Based Heterometallic M(I)M(III) Lattices: The Missing Link. Inorg. Chem. 2015, 54, 5410–5418. [Google Scholar] [CrossRef]
- Atzori, M.; Artizzu, F.; Sessini, E.; Marchio, L.; Loche, D.; Serpe, A.; Deplano, P.; Concas, G.; Pop, F.; Avarvari, N.; et al. Halogen-Bonding in a New Family of Tris(Haloanilato)Metallate(III) Magnetic Molecular Building Blocks. Dalton Trans. 2014, 43, 7006–7019. [Google Scholar] [CrossRef]
- Benmansour, S.; Gómez-Claramunt, P.; Vallés-García, C.; Mínguez Espallargas, G.; Gómez García, C.J. Key Role of the Cation in the Crystallization of Chiral Tris(Anilato)Metalate Magnetic Anions. Cryst. Growth Des. 2016, 16, 518–526. [Google Scholar] [CrossRef]
- Kitagawa, S.; Kawata, S. Coordination Compounds of 1,4-Dihydroxybenzoquinone and its Homologues. Structures and Properties. Coord. Chem. Rev. 2002, 224, 11–34. [Google Scholar] [CrossRef]
- Abrahams, B.F.; Grannas, M.J.; Hudson, T.A.; Hughes, S.A.; Pranoto, N.H.; Robson, R. Synthesis, Structure and Host-Guest Properties of (Et4N)2[SnIVCaII(Chloranilate)4], a New Type of Robust Microporous Coordination Polymer with a 2D Square Grid Structure. Dalton Trans. 2011, 40, 12242–12247. [Google Scholar] [CrossRef]
- Benmansour, S.; Gómez-García, C.J. A Heterobimetallic Anionic 3,6-Connected 2D Coordination Polymer Based on Nitranilate as Ligand. Polymers 2016, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Mercuri, M.L.; Congiu, F.; Concas, G.; Sahadevan, S.A. Recent Advances on Anilato-Based Molecular Materials with Magnetic and/or Conducting Properties. Magnetochemistry 2017, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Benmansour, S.; Gómez-García, C.J. Lanthanoid-Anilato Complexes and Lattices. Magnetochemistry 2020, 6, 71. [Google Scholar] [CrossRef]
- Riley, P.E.; Haddad, S.F.; Raymond, K.N. Preparation of Praseodymium(III) Chloranilate and the Crystal Structures of Pr2(C6Cl2O4)3·8C2H5OH and Na3[C6H2O(OH)(SO3)2]·H2O. Inorg. Chem. 1983, 22, 3090–3096. [Google Scholar] [CrossRef]
- Abrahams, B.F.; Coleiro, J.; Hoskins, B.F.; Robson, R. Gas Hydrate-like Pentagonal Dodecahedral M2(H2O)18 cages (M = Lanthanide or Y) in 2,5-Dihydroxybenzoquinone-Derived Coordination Polymers. Chem. Commun. 1996, 5, 603–604. [Google Scholar] [CrossRef]
- Abrahams, B.F.; Coleiro, J.; Ha, K.; Hoskins, B.F.; Orchard, S.D.; Robson, R. Dihydroxybenzoquinone and Chloranilic Acid Derivatives of Rare Earth Metals. J. Chem. Soc. Dalton Trans. 2002, 8, 1586–1594. [Google Scholar] [CrossRef]
- Benmansour, S.; Gómez-García, C.J.; Hernández-Paredes, A. The Complete Series of Lanthanoid-Chloranilato Lattices with Dimethylsulfoxide: Role of the Lanthanoid Size on the Coordination Number and Crystal Structure. Crystals 2022, 12, 261. [Google Scholar] [CrossRef]
- Benmansour, S.; Hernández-Paredes, A.; Gómez-García, C.J. Effect of the Lanthanoid-Size on the Structure of a Series of Lanthanoid-Anilato 2-D Lattices. J. Coord. Chem. 2018, 71, 845–863. [Google Scholar] [CrossRef]
- Gómez-Claramunt, P.; Benmansour, S.; Hernández-Paredes, A.; Cerezo-Navarrete, C.; Rodríguez-Fernández, C.; Canet-Ferrer, J.; Cantarero, A.; Gómez-García, C.J. Tuning the Structure and Properties of Lanthanoid Coordination Polymers with an Asymmetric Anilato Ligand. Magnetochemistry 2018, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Benmansour, S.; Hernández-Paredes, A.; Gómez-García, C.J. Two-Dimensional Magnetic Coordination Polymers Formed by Lanthanoids and Chlorocyananilato. Magnetochemistry 2018, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Kharitonov, A.D.; Trofimova, O.Y.; Meshcheryakova, I.N.; Fukin, G.K.; Khrizanforov, M.N.; Budnikova, Y.H.; Bogomyakov, A.S.; Aysin, R.R.; Kovalenko, K.A.; Piskunov, A.V. 2D-metal–organic Coordination Polymers of Lanthanides (La(III), Pr(III) and Nd(III)) with Redox-Active Dioxolene Bridging Ligands. CrystEngComm 2020, 22, 4675–4679. [Google Scholar] [CrossRef]
- Benmansour, S.; Pintado-Zaldo, C.; Martínez-Ponce, J.; Hernández-Paredes, A.; Valero-Martínez, A.; Gómez-Benmansour, M.; Gómez-García, C.J. The Versatility of Ethylene Glycol to Tune the Dimensionality and Magnetic Properties in DyIII-Anilato-Based Single-Ion Magnets. Cryst. Growth Des. 2023, 23, 1269–1280. [Google Scholar] [CrossRef]
- Benmansour, S.; Pérez-Herráez, I.; Cerezo-Navarrete, C.; López-Martínez, G.; Martínez Hernandez, C.; Gómez-García, C.J. Solvent-Modulation of the Structure and Dimensionality in Lanthanoid-Anilato Coordination Polymers. Dalton Trans. 2018, 47, 6729–6741. [Google Scholar] [CrossRef] [PubMed]
- Benmansour, S.; Hernández-Paredes, A.; Mondal, A.; López Martínez, G.; Canet-Ferrer, J.; Konar, S.; Gómez-García, C.J. Slow Relaxation of the Magnetization, Reversible Solvent Exchange and Luminescence in 2D Anilato-Based Frameworks. Chem. Commun. 2020, 56, 9862–9865. [Google Scholar] [CrossRef] [PubMed]
- Oxford Diffraction CrysalisPro. 2004. 171.33.55. Available online: https://www.rigaku.com/products/crystallography/crysalis (accessed on 27 April 2023).
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR97: A New Tool for Crystal Structure Determination and Refinement. J. Appl. Cryst. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Álvarez, S. Coordinating Ability of Anions, Solvents, Amino Acids, and Gases Towards Alkaline and Alkaline-Earth Elements, Transition Metals, and Lanthanides. Chem. Eur. J. 2020, 26, 4350–4377. [Google Scholar] [CrossRef]
- Álvarez, S. Distortion Pathways of Transition Metal Coordination Polyhedra Induced by Chelating Topology. Chem. Rev. 2015, 115, 13447–13483. [Google Scholar] [CrossRef] [Green Version]
Compound | [La2(C6O4Cl2)3(fma)6]·6fma | [La2(C6O4Br2)3(fma)6]·6fma |
Ref | 1 | 2 |
CCDC | 2259696 | 2259697 |
Empirical formula | C15H5Cl3LaN6O12 | C15H8Br3LaN6O12 |
Formula weight | 706.51 | 842.91 |
Crystal system | triclinic | triclinic |
Space group | P-1 | P-1 |
a (Å) | 8.9314(10) | 8.9686(9) |
b (Å) | 10.5972(9) | 10.7072(12) |
c (Å) | 14.5498(13) | 14.5975(11) |
α (°) | 75.639(7) | 75.178(8) |
β (°) | 84.309(8) | 83.957(7) |
γ (°) | 76.755(8) | 76.664(9) |
Volume (Å3) | 1297.3(2) | 1317.0(2) |
Z | 2 | 2 |
Density (calculated) (g/cm3) | 1.809 | 2.126 |
Absorption coefficient (mm−1) | 2.022 | 6.239 |
F(000) | 682 | 796 |
Crystal size (mm3) | 0.07 × 0.04 × 0.02 | 0.07 × 0.04 × 0.02 |
2θ range for data (°) | 3.372–25.048 | 3.367–25.036 |
Reflections collected | 15226 | 8761 |
Data | 4582 | 4651 |
Restraints | 0 | 51 |
Parameters | 343 | 352 |
Goodness-of-fit on F2 | 1.062 | 1.052 |
R1 [I > 2s(I)] | 0.0488 | 0.0452 |
wR2 (all data) | 0.1228 | 0.0954 |
Largest diff. peak/hole/e Å−3 | 1.126 and −0.897 | 1.278 and −0.954 |
Compound | [Eu2(C6O4Cl2)3(fma)6]·6fma | [Eu2(C6O4Br2)3(fma)6]·6fma |
Ref | 3 | 4 |
CCDC | 2259698 | 2259699 |
Empirical formula | C15H5Cl3EuN6O12 | C15H8Br3EuN6O12 |
Formula weight | 729.64 | 861.00 |
Crystal system | triclinic | triclinic |
Space group | P-1 | P-1 |
a (Å) | 8.8487(4) | 8.8978(6) |
b (Å) | 10.5840(5) | 10.6669(7) |
c (Å) | 14.2341(6) | 14.3447(10) |
α (°) | 75.534(4) | 75.168(6) |
β (°) | 84.718(4) | 84.539(5) |
γ (°) | 76.350(4) | 76.145(6) |
Volume (Å3) | 1253.59(10) | 1276.99(16) |
Z | 2 | 2 |
Density (calculated) (g/cm3) | 1.933 | 2.239 |
Absorption coefficient (mm−1) | 2.891 | 7.218 |
F(000) | 714 | 818 |
Crystal size (mm3) | 0.11 × 0.08 × 0.04 | 0.09 × 0.05 × 0.02 |
2θ range for data (°) | 3.309–25.048 | 6.75–50.1 |
Reflections collected | 4432 | 8637 |
Data | 4008 | 4496 |
Restraints | 42 | 74 |
Parameters | 343 | 334 |
Goodness-of-fit on F2 | 1.047 | 1.032 |
R1 [I > 2s(I)] | 0.0296 | 0.0496 |
wR2 (all data) | 0.0662 | 0.1223 |
Largest diff. peak/hole/e Å−3 | 1.495 and −0.956 | 2.15 and −2.55 |
Geometry | Symmetry | 1 (La/Cl) | 2 (La/Br) | 3 (Eu/Cl) | 4 (Eu/Br) |
---|---|---|---|---|---|
EP-9 | D9h | 35.526 | 35.419 | 35.988 | 35.960 |
OPY-9 | C8v | 22.645 | 22.742 | 22.286 | 22.320 |
HBPY-9 | D7h | 19.617 | 19.309 | 19.753 | 19.516 |
JTC-9 | C3v | 14.629 | 14.642 | 15.021 | 14.981 |
JCCU-9 | C4v | 10.075 | 9.946 | 9.914 | 9.827 |
CCU-9 | C4v | 8.982 | 8.864 | 8.932 | 8.842 |
JCSAPR-9 | C4v | 1.389 | 1.383 | 1.120 | 1.146 |
CSAPR-9 | C4v | 0.478 | 0.487 | 0.318 | 0.348 |
JTCTPR-9 | D3h | 2.866 | 2.986 | 2.644 | 2.825 |
TCTPR-9 | D3h | 1.592 | 1.618 | 1.369 | 1.490 |
JTDIC-9 | C3v | 12.091 | 12.151 | 12.273 | 12.234 |
HH-9 | C2v | 11.162 | 11.111 | 11.641 | 11.504 |
MFF-9 | Cs | 0.969 | 0.975 | 0.882 | 0.870 |
Atoms | 1 (La/Cl) | 2 (La/Br) | 3 (Eu/Cl) | 4 (Eu/Br) |
---|---|---|---|---|
Ln-O2 | 2.557(4) | 2.622(5) | 2.454(3) | 2.453(5) |
Ln-O6 | 2.614(4) | 2.566(4) | 2.465(3) | 2.453(5) |
Ln-O12 | 2.548(4) | 2.556(5) | 2.455(3) | 2.465(5) |
Ln-O16 | 2.552(4) | 2.557(5) | 2.548(3) | 2.548(5) |
Ln-O22 | 2.526(4) | 2.544(4) | 2.444(3) | 2.477(5) |
Ln-O26 | 2.544(4) | 2.539(4) | 2.459(3) | 2.483(5) |
Ln-O1D | 2.503(4) | 2.520(4) | 2.377(3) | 2.382(5) |
Ln-O11D | 2.468(4) | 2.508(5) | 2.418(3) | 2.413(5) |
Ln-O21D | 2.508(4) | 2.483(4) | 2.400(3) | 2.429(5) |
Ln-Oanilato 1 | 2.557 | 2.564 | 2.471 | 2.480 |
Ln-Ofma 2 | 2.493 | 2.504 | 2.398 | 2.408 |
1 (La/Cl) | 2 (La/Br) | 3 (Eu/Cl) | 4 (Eu/Br) | |
---|---|---|---|---|
Ln-Ln (Å) | 21.27 | 21.30 | 20.74 | 20.85 |
18.07 | 18.15 | 17.78 | 17.83 | |
11.43 | 11.54 | 11.36 | 11.47 | |
Ln-Ln-Ln (°) | 86.11 | 86.61 | 87.30 | 87.37 |
109.05 | 109.15 | 109.02 | 109.48 | |
159.92 | 159.71 | 159.18 | 159.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benmansour, S.; Hernández-Paredes, A.; Defez-Aznar, K.; Gómez-García, C.J. Two-Dimensional Lattices with Lanthanoids, Anilato Ligands and Formamide. Crystals 2023, 13, 939. https://doi.org/10.3390/cryst13060939
Benmansour S, Hernández-Paredes A, Defez-Aznar K, Gómez-García CJ. Two-Dimensional Lattices with Lanthanoids, Anilato Ligands and Formamide. Crystals. 2023; 13(6):939. https://doi.org/10.3390/cryst13060939
Chicago/Turabian StyleBenmansour, Samia, Antonio Hernández-Paredes, Kilian Defez-Aznar, and Carlos J. Gómez-García. 2023. "Two-Dimensional Lattices with Lanthanoids, Anilato Ligands and Formamide" Crystals 13, no. 6: 939. https://doi.org/10.3390/cryst13060939
APA StyleBenmansour, S., Hernández-Paredes, A., Defez-Aznar, K., & Gómez-García, C. J. (2023). Two-Dimensional Lattices with Lanthanoids, Anilato Ligands and Formamide. Crystals, 13(6), 939. https://doi.org/10.3390/cryst13060939