Double-Layer Kagome Metals Pt3Tl2 and Pt3In2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
2.3. Calculations
3. Results and Discussion
3.1. Crystal Structure
3.2. Electronic Structures
3.3. Physical Properties
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramirez, A. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 1994, 24, 453–480. [Google Scholar] [CrossRef]
- Shores, M.P.; Nytko, E.A.; Bartlett, B.M.; Nocera, D.G. A structurally perfect S = 1/2 kagome antiferromagnet. J. Am. Chem. Soc. 2005, 127, 13462–13463. [Google Scholar] [CrossRef] [PubMed]
- Helton, J.; Matan, K.; Shores, M.; Nytko, E.; Bartlett, B.; Yoshida, Y.; Takano, Y.; Suslov, A.; Qiu, Y.; Chung, J.H.; et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 2007, 98, 107204. [Google Scholar] [CrossRef] [PubMed]
- Han, T.H.; Helton, J.S.; Chu, S.; Nocera, D.G.; Rodriguez-Rivera, J.A.; Broholm, C.; Lee, Y.S. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 2012, 492, 406–410. [Google Scholar] [CrossRef]
- Norman, M. Colloquium: Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 2016, 88, 041002. [Google Scholar] [CrossRef]
- Mendels, P.; Bert, F. Quantum kagome frustrated antiferromagnets: One route to quantum spin liquids. Comptes Rendus Phys. 2016, 17, 455–470. [Google Scholar] [CrossRef]
- Guo, H.M.; Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 2009, 80, 113102. [Google Scholar] [CrossRef]
- Sun, K.; Gu, Z.; Katsura, H.; Sarma, S.D. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 2011, 106, 236803. [Google Scholar] [CrossRef]
- Okamoto, S.; Mohanta, N.; Dagotto, E.; Sheng, D. Topological flat bands in a kagome lattice multiorbital system. Commun. Phys. 2022, 5, 198. [Google Scholar] [CrossRef]
- Balents, L.; Dean, C.R.; Efetov, D.K.; Young, A.F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 2020, 16, 725–733. [Google Scholar] [CrossRef]
- Sales, B.C.; Meier, W.R.; Parker, D.S.; Yin, L.; Yan, J.; May, A.F.; Calder, S.; Aczel, A.A.; Zhang, Q.; Li, H.; et al. Chemical Control of Magnetism in the Kagome Metal CoSn1-xInx: Magnetic Order from Nonmagnetic Substitutions. Chem. Mater. 2022, 34, 7069–7077. [Google Scholar] [CrossRef]
- Sales, B.C.; Yan, J.; Meier, W.R.; Christianson, A.D.; Okamoto, S.; McGuire, M.A. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Phys. Rev. Mater. 2019, 3, 114203. [Google Scholar] [CrossRef]
- Kang, M.; Ye, L.; Fang, S.; You, J.S.; Levitan, A.; Han, M.; Facio, J.I.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 2020, 19, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Jannin, C.; Michel, A.; Lecocq, P. Magnetism and properties of different phases in the Fe-Sn system. Comptes Redus Hebd. Séances Acad. Sci. 1963, 257, 1906–1907. [Google Scholar]
- Sales, B.C.; Saparov, B.; McGuire, M.A.; Singh, D.J.; Parker, D.S. Ferromagnetism of Fe3Sn and alloys. Sci. Rep. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Kanematsu, K.; Ohoyama, T. Magnetic properties and phase transition of Fe3Ge. J. Phys. Soc. Jpn. 1963, 18, 920–921. [Google Scholar] [CrossRef]
- McGuire, M.A.; Shanavas, K.; Kesler, M.S.; Parker, D.S. Tuning magnetocrystalline anisotropy by cobalt alloying in hexagonal Fe3Ge. Sci. Rep. 2018, 8, 14206. [Google Scholar] [CrossRef]
- Yang, H.; Sun, Y.; Zhang, Y.; Shi, W.J.; Parkin, S.S.; Yan, B. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 2017, 19, 015008. [Google Scholar] [CrossRef]
- Liu, J.; Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 2017, 119, 087202. [Google Scholar] [CrossRef]
- Nayak, A.K.; Fischer, J.E.; Sun, Y.; Yan, B.; Karel, J.; Komarek, A.C.; Shekhar, C.; Kumar, N.; Schnelle, W.; Kübler, J.; et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2016, 2, e1501870. [Google Scholar] [CrossRef]
- Meier, W.R.; Yan, J.; McGuire, M.A.; Wang, X.; Christianson, A.D.; Sales, B.C. Reorientation of antiferromagnetism in cobalt doped FeSn. Phys. Rev. B 2019, 100, 184421. [Google Scholar] [CrossRef]
- Meier, W.R.; Du, M.H.; Okamoto, S.; Mohanta, N.; May, A.F.; McGuire, M.A.; Bridges, C.A.; Samolyuk, G.D.; Sales, B.C. Flat bands in the CoSn-type compounds. Phys. Rev. B 2020, 102, 075148. [Google Scholar] [CrossRef]
- Teng, X.; Chen, L.; Ye, F.; Rosenberg, E.; Liu, Z.; Yin, J.X.; Jiang, Y.X.; Oh, J.S.; Hasan, M.Z.; Neubauer, K.J.; et al. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature 2022, 609, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Oh, J.S.; Tan, H.; Chen, L.; Huang, J.; Gao, B.; Yin, J.X.; Chu, J.H.; Hashimoto, M.; Lu, D.; et al. Magnetism and charge density wave order in kagome FeGe. Nat. Phys. 2023, 1–9. [Google Scholar] [CrossRef]
- Fenner, L.; Dee, A.; Wills, A. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2. J. Phys. Condens. Matter. 2009, 21, 452202. [Google Scholar] [CrossRef]
- Kida, T.; Fenner, L.; Dee, A.; Terasaki, I.; Hagiwara, M.; Wills, A. The giant anomalous Hall effect in the ferromagnet Fe3Sn2—A frustrated kagome metal. J. Phys. Condens. Matter. 2011, 23, 112205. [Google Scholar] [CrossRef]
- Ye, L.; Kang, M.; Liu, J.; Von Cube, F.; Wicker, C.R.; Suzuki, T.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Bell, D.C.; et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 2018, 555, 638–642. [Google Scholar] [CrossRef]
- Wang, N.; Gu, Y.; McGuire, M.A.; Yan, J.; Shi, L.; Cui, Q.; Chen, K.; Wang, Y.; Zhang, H.; Yang, H.; et al. A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice. Chin. Phys. B 2022, 31, 017106. [Google Scholar] [CrossRef]
- Yi, X.W.; Liao, Z.W.; You, J.Y.; Gu, B.; Su, G. Topological superconductivity and large spin Hall effect in the kagome family Ti6X4 (X = Bi, Sb, Pb, Tl, In). Iscience 2023, 26, 105813. [Google Scholar] [CrossRef]
- Bhan, S.; Gödecke, T.; Panday, P.; Schubert, K. Über die mischungen palladium-thallium und platin-thallium. J. Less-Common Met. 1968, 16, 415–425. [Google Scholar] [CrossRef]
- Okamoto, H. Pt-Tl (Platinum-Thallium). Binary Alloy Phase Diagrams, 2nd ed.; Massalski, T.B., Ed.; ASM International: Almere, The Netherlands, 1990; Volume 3, p. 3143. [Google Scholar]
- Canfield, P.C.; Kong, T.; Kaluarachchi, U.S.; Jo, N.H. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples. Philos. Mag. 2016, 96, 84–92. [Google Scholar] [CrossRef]
- Okamoto, H. In-Pt (Indium-Platinum). Binary Alloy Phase Diagrams, 2nd ed.; Massalski, T.B., Ed.; ASM International: Almere, The Netherlands, 1990; Volume 3, p. 2276. [Google Scholar]
- Huq, A.; Hodges, J.P.; Gourdon, O.; Heroux, L. Powgen: A third-generation high-resolution high-throughput powder diffraction instrument at the Spallation Neutron Source. Z. Kristallogr. Proc. 2011, 1, 127–135. [Google Scholar]
- Huq, A.; Kirkham, M.; Peterson, P.F.; Hodges, J.P.; Whitfield, P.S.; Page, K.; Hugle, T.; Iverson, E.B.; Parizzi, A.; Rennich, G. POWGEN: Rebuild of a third-generation powder diffractometer at the Spallation Neutron Source. J. Appl. Crystallogr. 2019, 52, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 55, 17953. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Holt, Rinehart and Winston: New York, NY, USA, 1976. [Google Scholar]
- Blundell, S.J. Magnetism in Condensed Matter, 1st ed.; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Ali, M.N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q.D.; Schoop, L.M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N.P.; et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205–208. [Google Scholar] [CrossRef]
- Shoenberg, D. Magnetic Oscillations in Metals; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
Pt3In2 | Pt3Tl2 | |
---|---|---|
radiation | X-ray | neutron |
a (Å) | 5.5763(2) | 5.63736(4) |
c (Å) | 13.6919(5) | 13.8450(2) |
0.169(1) | 0.1667(8) | |
0.0890(2) | 0.0854(1) | |
0.9132(6) | 0.9055(2) | |
Rp | 10.8 | 10.5 |
Rwp | 15.7 | 6.71 |
2.44 | 7.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGuire, M.A.; Clements, E.M.; Zhang, Q.; Okamoto, S. Double-Layer Kagome Metals Pt3Tl2 and Pt3In2. Crystals 2023, 13, 833. https://doi.org/10.3390/cryst13050833
McGuire MA, Clements EM, Zhang Q, Okamoto S. Double-Layer Kagome Metals Pt3Tl2 and Pt3In2. Crystals. 2023; 13(5):833. https://doi.org/10.3390/cryst13050833
Chicago/Turabian StyleMcGuire, Michael A., Eleanor M. Clements, Qiang Zhang, and Satoshi Okamoto. 2023. "Double-Layer Kagome Metals Pt3Tl2 and Pt3In2" Crystals 13, no. 5: 833. https://doi.org/10.3390/cryst13050833
APA StyleMcGuire, M. A., Clements, E. M., Zhang, Q., & Okamoto, S. (2023). Double-Layer Kagome Metals Pt3Tl2 and Pt3In2. Crystals, 13(5), 833. https://doi.org/10.3390/cryst13050833