Investigation of the Temperature Dependence of Volt-Ampere Characteristics of a Thin-Film Si3N4 Memristor
Abstract
:1. Introduction
- We reviewed the previously described electrical response model for Ni/Si3N4/SiO2/p+-Si structure and proposed a new approximation model using the SCLC equation with a Gaussian distribution of trap states;
- Using the mean absolute percentage error (MAPE) algorithm, we showed that the new approximation model provides a better experimental data fit;
- We calculated and analyzed the Gaussian distribution of trap states at different temperatures for the LRS and HRS of the studied structure;
- We measured memristor resistance over time at different elevated operating temperatures and evaluated conditions for 10-year LRS retention.
2. Related Work
3. Materials and Methods
3.1. Fabrication of the Ni/Si3N4/SiO2/p+-Si Structure
3.2. The SCLC Model and Laws of Trap Distribution for the VAC Approximation
- The absence of the need for a forming operation;
- Reproducible bipolar switching (Figure 3a);
- VACs measurement at temperatures of 298.15 K, 348.15 K, and 398.15 K (Figure 3b);
- VAC approximation using the SCLC model with uniform distribution of traps [10] described by following Equations (1)–(4);
- Structure parameters obtained from the approximation, including the effective radius of 100 µm in HRS and 46 nm in LRS.
3.3. Determining the State Retention Time for LRS
4. Results and Discussion
4.1. Approximation of the VACs with the SCLC Model in the Case of Exponential and Gaussian Laws of Trap Distributions
4.2. Estimation of Temperature Conditions That Allow 10-Year Retention of LRS
- A slope factor of 0.8197 with an offset of −7.3716 (approximation reliability value R2 = 0.9995) for a 5 % change in resistance;
- A slope factor of 0.7845 with an offset of −7.1326 (approximation reliability value R2 = 0.9735) for 10% change.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeong, D.S.; Thomas, R.; Katiyar, R.S.; Scott, J.F.; Kohlstedt, H.; Petraru, A.; Hwang, C.S. Emerging Memories: Resistive Switching Mechanisms and Current Status. Rep. Prog. Phys. 2012, 75, 076502. [Google Scholar] [CrossRef]
- Zhuk, M.; Zarubin, S.; Karateev, I.; Matveyev, Y.; Gornev, E.; Krasnikov, G.; Negrov, D.; Zenkevich, A. On-Chip TaOx-Based Non-Volatile Resistive Memory for in Vitro Neurointerfaces. Front. Neurosci. 2020, 14, 94. [Google Scholar] [CrossRef]
- Chua, L. Memristor-The Missing Circuit Element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The Missing Memristor Found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Gismatulin, A.A.; Kamaev, G.N.; Kruchinin, V.N.; Gritsenko, V.A.; Orlov, O.M.; Chin, A. Charge Transport Mechanism in the Forming-Free Memristor Based on Silicon Nitride. Sci. Rep. 2021, 11, 2417. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, S.; Noh, T.W. Resistive Switching Phenomena: A Review of Statistical Physics Approaches. Appl. Phys. Rev. 2015, 2, 031303. [Google Scholar] [CrossRef] [Green Version]
- Du, N.; Zhao, X.; Chen, Z.; Choubey, B.; Di Ventra, M.; Skorupa, I.; Bürger, D.; Schmidt, H. Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs. Front. Neurosci. 2021, 15, 660894. [Google Scholar] [CrossRef]
- Waser, R.; Dittmann, R.; Menzel, S.; Noll, T. Introduction to New Memory Paradigms: Memristive Phenomena and Neuromorphic Applications. Faraday Discuss. 2019, 213, 11–27. [Google Scholar] [CrossRef]
- Gritsenko, V.A. Electronic Structure of Silicon Nitride. Phys. Usp. 2012, 55, 498–507. [Google Scholar] [CrossRef]
- Rose, A. Space-Charge-Limited Currents in Solids. Phys. Rev. 1955, 97, 1538–1544. [Google Scholar] [CrossRef]
- Vishnyakov, A.V.; Novikov, Y.N.; Gritsenko, V.A.; Nasyrov, K.A. The Charge Transport Mechanism in Silicon Nitride: Multi-Phonon Trap Ionization. Solid-State Electron. 2009, 53, 251–255. [Google Scholar] [CrossRef]
- Gritsenko, V.A.; Perevalov, T.V.; Orlov, O.M.; Krasnikov, G.Y. Nature of Traps Responsible for the Memory Effect in Silicon Nitride. Appl. Phys. Lett. 2016, 109, 062904. [Google Scholar] [CrossRef]
- Orlov, O.M.; Gismatulin, A.A.; Gritsenko, V.A.; Mizginov, D.S. Charge Transport Mechanism in a Formless Memristor Based on Silicon Nitride. Russ. Microelectron. 2020, 49, 372–377. [Google Scholar] [CrossRef]
- Voronkovskii, V.A.; Aliev, V.S.; Gerasimova, A.K.; Islamov, D.R. Conduction Mechanisms of TaN/HfOx/Ni Memristors. Mater. Res. Express 2019, 6, 076411. [Google Scholar] [CrossRef]
- Teplov, G.; Zhevnenko, D.; Meshchaninov, F.; Kozhevnikov, V.; Sattarov, P.; Kuznetsov, S.; Magomedrasulov, A.; Telminov, O.; Gornev, E. Memristor Degradation Analysis Using Auxiliary Volt-Ampere Characteristics. Micromachines 2022, 13, 1691. [Google Scholar] [CrossRef]
- Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Publisher Correction: Memory Devices and Applications for in-Memory Computing. Nat. Nanotechnol. 2020, 15, 812. [Google Scholar] [CrossRef]
- James, A.P. (Ed.) Deep Learning Classifiers with Memristive Networks: Theory and Applications. In Modeling and Optimization in Science and Technologies; Springer International Publishing: Cham, Switzerland, 2020; Volume 14, ISBN 9783030145224. [Google Scholar]
- Kim, D.; Kim, S.; Kim, S. Logic-in-Memory Application of CMOS Compatible Silicon Nitride Memristor. Chaos Solitons Fractals 2021, 153, 111540. [Google Scholar] [CrossRef]
- Xing, Z.; Zhang, C.; Cui, H.; Hai, Y.; Wu, Q.; Min, D. Space Charge Accumulation and Decay in Dielectric Materials with Dual Discrete Traps. Appl. Sci. 2019, 9, 4253. [Google Scholar] [CrossRef] [Green Version]
- Tzeng, S.-D.; Gwo, S. Charge Trapping Properties at Silicon Nitride/Silicon Oxide Interface Studied by Variable-Temperature Electrostatic Force Microscopy. J. Appl. Phys. 2006, 100, 023711. [Google Scholar] [CrossRef] [Green Version]
- Haneef, H.F.; Zeidell, A.M.; Jurchescu, O.D. Charge Carrier Traps in Organic Semiconductors: A Review on the Underlying Physics and Impact on Electronic Devices. J. Mater. Chem. C 2020, 8, 759–787. [Google Scholar] [CrossRef]
- Steiger, J.; Schmechel, R.; von Seggern, H. Energetic Trap Distributions in Organic Semiconductors. Synth. Met. 2002, 129, 1–7. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Pantelides, S.T. Theory of Space Charge Limited Currents. Phys. Rev. Lett. 2012, 108, 266602. [Google Scholar] [CrossRef] [Green Version]
- Krasnikov, G.Y. Distinctive features and problems of CMOS technology for decrease in the node size to 0.18 μm or less. Nanotechnol. Russ. 2008, 3, 502–506. [Google Scholar] [CrossRef]
- Sun, B.; Ranjan, S.; Zhou, G.; Guo, T.; Xia, Y.; Wei, L.; Zhou, Y.N.; Wu, Y.A. Multistate Resistive Switching Behaviors for Neuromorphic Computing in Memristor. Mater. Today Adv. 2021, 9, 100125. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.; Hwang, S.; Kim, M.-H.; Chang, Y.-F.; Park, B.-G. Analog Synaptic Behavior of a Silicon Nitride Memristor. ACS Appl. Mater. Interfaces 2017, 9, 40420–40427. [Google Scholar] [CrossRef]
- Kim, S.; Jung, S.; Kim, M.-H.; Cho, S.; Park, B.-G. Resistive Switching Characteristics of Si3N4 -Based Resistive-Switching Random-Access Memory Cell with Tunnel Barrier for High Density Integration and Low-Power Applications. Appl. Phys. Lett. 2015, 106, 212106. [Google Scholar] [CrossRef]
- Chang, Y.-F.; Fowler, B.; Chen, Y.-C.; Zhou, F.; Wu, X.; Chen, Y.-T.; Wang, Y.; Xue, F.; Lee, J.C. Resistive Switching Characteristics and Mechanisms in Silicon Oxide Memory Devices. Phys. Sci. Rev. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Tikhov, S.V.; Mikhaylov, A.N.; Belov, A.I.; Korolev, D.S.; Antonov, I.N.; Karzanov, V.V.; Gorshkov, O.N.; Tetelbaum, D.I.; Karakolis, P.; Dimitrakis, P. Role of Highly Doped Si Substrate in Bipolar Resistive Switching of Silicon Nitride MIS-Capacitors. Microelectron. Eng. 2018, 187–188, 134–138. [Google Scholar] [CrossRef]
- Rajbhar, M.K.; Rajamani, S.; Singh, S.K.; Surodin, S.; Nikolichev, D.; Kryukov, R.; Korolev, D.; Nikolskaya, A.; Belov, A.; Nezhdanov, A.; et al. Gallium Nitride Nanocrystal Formation in Si3N4 Matrix by Ion Synthesis. Bull. Mater. Sci. 2020, 43, 234. [Google Scholar] [CrossRef]
- Wei, N.; Ding, X.; Gao, S.; Wu, W.; Zhao, Y. HfOx/Ge RRAM with High ON/OFF Ratio and Good Endurance. Electronics 2022, 11, 3820. [Google Scholar] [CrossRef]
- Wan, W.; Kubendran, R.; Schaefer, C.; Eryilmaz, S.B.; Zhang, W.; Wu, D.; Deiss, S.; Raina, P.; Qian, H.; Gao, B.; et al. A Compute-in-Memory Chip Based on Resistive Random-Access Memory. Nature 2022, 608, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, G.; Mandal, S.K.; Pannala, M.; Chakrabarti, C.; Seo, J.-S.; Ogras, U.Y.; Cao, Y. SIAM: Chiplet-Based Scalable In-Memory Acceleration with Mesh for Deep Neural Networks. ACM Trans. Embed. Comput. Syst. 2021, 20, 1–24. [Google Scholar] [CrossRef]
- NeŠpůrek, S.; Smejtek, P. Space-Charge Limited Currents in Insulators with the Gaussian Distribution of Traps. Czech J. Phys. 1972, 22, 160–175. [Google Scholar] [CrossRef]
- Loy, D.J.J.; Dananjaya, P.A.; Hong, X.L.; Shum, D.P.; Lew, W.S. Conduction Mechanisms on High Retention Annealed MgO-Based Resistive Switching Memory Devices. Sci. Rep. 2018, 8, 14774. [Google Scholar] [CrossRef]
- Jiang, H.; Han, L.; Lin, P.; Wang, Z.; Jang, M.H.; Wu, Q.; Barnell, M.; Yang, J.J.; Xin, H.L.; Xia, Q. Sub-10 Nm Ta Channel Responsible for Superior Performance of a HfO2 Memristor. Sci. Rep. 2016, 6, 28525. [Google Scholar] [CrossRef] [Green Version]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder—Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for Regression Models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M. Electron Traps in Semiconducting Polymers: Exponential versus Gaussian Trap Distribution. Phys. Rev. B 2011, 83, 195204. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Park, I.H.; Lee, J.D.; Shin, H.C.; Park, B.-G. Electron Trap Density Distribution of Si-Rich Silicon Nitride Extracted Using the Modified Negative Charge Decay Model of Silicon-Oxide-Nitride-Oxide-Silicon Structure at Elevated Temperatures. Appl. Phys. Lett. 2006, 89, 063508. [Google Scholar] [CrossRef]
Resistance State | HRS | LRS | ||||
---|---|---|---|---|---|---|
, K | 298.15 | 348.15 | 398.15 | 298.15 | 348.15 | 398.15 |
parameter | 0.1996 | 0.4587 | 0.2837 | 0.4652 | 0.3158 | 0.2485 |
effective radius nm | 0.15 | 0.40 | 1.54 | 58.09 | 63.34 | 63.24 |
MAPEGau,Exp, ×104 | 54 | 56 | 41 | 61 | 63 | 59 |
MAPEUni, ×104 | 115 | 220 | 101 | 341 | 257 | 248 |
Improvement of MAPEGau,Exp compared to MAPEUni, % | 53 | 75 | 59 | 82 | 75 | 76 |
Resistance State | HRS | LRS | ||||
---|---|---|---|---|---|---|
, K | 298.15 | 348.15 | 398.15 | 298.15 | 348.15 | 398.15 |
Distribution maximum , ×1025 | 1.298 | 1.346 | 1.601 | 1.444 | 1.622 | 1.710 |
for the Gaussian law | 0.0236 | 0.0220 | 0.0155 | 0.0191 | 0.0151 | 0.0136 |
Distribution maximum , ×1030 | 9.964 | 9.265 | 6.554 | 8.048 | 6.380 | 5.741 |
for the exponential law | 171.73 | 159.68 | 112.95 | 138.71 | 109.95 | 98.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizginov, D.; Telminov, O.; Yanovich, S.; Zhevnenko, D.; Meshchaninov, F.; Gornev, E. Investigation of the Temperature Dependence of Volt-Ampere Characteristics of a Thin-Film Si3N4 Memristor. Crystals 2023, 13, 323. https://doi.org/10.3390/cryst13020323
Mizginov D, Telminov O, Yanovich S, Zhevnenko D, Meshchaninov F, Gornev E. Investigation of the Temperature Dependence of Volt-Ampere Characteristics of a Thin-Film Si3N4 Memristor. Crystals. 2023; 13(2):323. https://doi.org/10.3390/cryst13020323
Chicago/Turabian StyleMizginov, Dmitry, Oleg Telminov, Sergey Yanovich, Dmitry Zhevnenko, Fedor Meshchaninov, and Evgeny Gornev. 2023. "Investigation of the Temperature Dependence of Volt-Ampere Characteristics of a Thin-Film Si3N4 Memristor" Crystals 13, no. 2: 323. https://doi.org/10.3390/cryst13020323
APA StyleMizginov, D., Telminov, O., Yanovich, S., Zhevnenko, D., Meshchaninov, F., & Gornev, E. (2023). Investigation of the Temperature Dependence of Volt-Ampere Characteristics of a Thin-Film Si3N4 Memristor. Crystals, 13(2), 323. https://doi.org/10.3390/cryst13020323