Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber
Abstract
1. Introduction
2. Preparation of TI Bi2Se3
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirjanic, V.; Sreckovic, M.; Mirjanic, D.; Bugarinovic, A.; Druzijanic, D.; Mitic, V.V. Chosen applications and approaches to modeling lasers in dentistry. Mod. Phys. Lett. B 2021, 35, 2150329. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Liu, Y.F.; Jia, D.G.; Yu, T.Y.; Huang, Y.D.; Zhang, Z.Y.; Wang, R.X. Electrically controlled tunable optical parametric oscillator (3.0–6.7 µm) based on BaGa4Se7 crystal pumped by a Q-switch Nd: YAG laser. In AOPC 2020: Advanced Laser Technology and Application; SPIE: Bellingham, WA, USA, 2020; Volume 11562. [Google Scholar]
- Tan, S.J.; Harun, S.W.; Arof, H.; Ahmad, H. Switchable Q-switched and mode-locked erbium-doped fiber laser operating in the L-band region. Chin. Opt. Lett. 2013, 11, 073201. [Google Scholar]
- Tan, S.J.; Tiu, Z.C.; Harun, S.W.; Ahmad, H. Sideband-controllable soliton pulse with bismuth-based erbium-doped fiber. Chin. Opt. Lett. 2015, 13, 111406. [Google Scholar] [CrossRef][Green Version]
- Adnan, N.; Bidin, N.; Taib, N.; Haris, H.; Fakaruddin, M.; Hashim, A.; Krishnan, G.; Harun, S. Passively Q-switched flashlamp pumped Nd: YAG laser using liquid graphene oxide as saturable absorber. Opt. Laser Technol. 2016, 80, 28–32. [Google Scholar] [CrossRef]
- Taib, N.A.M.; Bidin, N.; Haris, H.; Adnan, N.N.; Ahmad, M.F.S.; Harun, S.W. Multi-walled carbon nanotubes saturable absorber in Q-switching flashlamp pumped Nd: YAG laser. Opt. Laser Technol. 2016, 79, 193–197. [Google Scholar] [CrossRef]
- Markom, A.M.; Latiff, A.A.; Muhammad, A.R.; Ahmad, M.T.; Yusoff, Z.M.; Paul, M.C.; Dhar, A.; Das, S.; Harun, S.W. Q-switched Zirconia-Yttria-Aluminium-Erbium-doped pulsed fiber laser with a pencil-core of graphene as saturable absorber. Optoelectron. Adv. Mater.-Rapid Commun. 2020, 14, 1–5. [Google Scholar]
- Dai, L.L.; Huang, Z.N.; Huang, Q.Q.; Zhao, C.; Rozhin, A.; Sergeyev, S.; Al Araimi, M.; Mou, C.B. Carbon nanotube mode-locked fiber lasers: Recent progress and perspectives. Nanophotonics 2021, 10, 749–775. [Google Scholar] [CrossRef]
- Haris, H.; Anyi, C.; Ali, N.; Arof, H.; Ahmad, F.; Nor, R.; Zulkepely, N.; Harun, S. Passively Q-switched erbium-doped fiber laser at L-band region by employing multi-walled carbon nanotubes as saturable absorber. Optoelectron. Adv. Mater.-Rapid Commun. 2014, 8, 1025–1028. [Google Scholar]
- Guo, Y.X.; Li, X.H.; Guo, P.L.; Zheng, H.R. Supercontinuum generation in an Er-doped figure-eight passively mode-locked fiber laser. Opt Express 2018, 26, 9893–9900. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, Z.H.; Liu, Y.X.; Wang, Y.X.; Su, F.; Li, S.S.; Zhang, Y.; Li, H.; Chen, H.J.; Zhao, Z.R.; et al. Three-Dimensional Graphene Field-Effect Transistors as High-Performance Photodetectors. Nano Lett. 2019, 19, 1494–1503. [Google Scholar] [CrossRef]
- Haris, H.; Arof, H.; Muhammad, A.R.; Anyi, C.L.; Tan, S.J.; Kasim, N.; Harun, S.W. Passively Q-switched and mode-locked Erbium-doped fiber laser with topological insulator Bismuth Selenide (Bi2Se3) as saturable absorber at C-band region. Opt. Fiber Technol. 2019, 48, 117–122. [Google Scholar] [CrossRef]
- Jin, L.; Ma, X.; Zhang, H.; Zhang, H.; Chen, H.; Xu, Y. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Opt. Express 2018, 26, 31244–31252. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Pang, L.; Han, H.; Bi, K.; Lei, M.; Wei, Z. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale 2017, 9, 5806–5811. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, M.; OuYang, Y.; Hou, H.; Ma, G.; Lei, M.; Wei, Z. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology 2018, 29, 174002. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, H.; Liu, X.; Wang, Y.; Lei, M.; Liu, W.; Guo, W.; Wei, Z. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron. Adv. 2021, 4, 200029-1. [Google Scholar] [CrossRef]
- Li, L.; Pang, L.; Wang, R.; Zhang, X.; Hui, Z.; Han, D.; Zhao, F.; Liu, W. Ternary Transition Metal Dichalcogenides for High Power Vector Dissipative Soliton Ultrafast Fiber Laser. Laser Photonics Rev. 2021, 16, 2100255. [Google Scholar] [CrossRef]
- Hisyam, M.B.; Rusdi, M.F.M.; Latiff, A.A.; Harun, S.W. Generation of Mode-Locked Ytterbium Doped Fiber Ring Laser Using Few-Layer Black Phosphorus as a Saturable Absorber. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 39–43. [Google Scholar] [CrossRef]
- Markom, A.M.; Tan, S.J.; Muhammad, A.R.; Paul, M.C.; Dhar, A.; Das, S.; Latiff, A.A.; Harun, S.W. Dark pulse mode-locked fibre laser with zirconia-based erbium-doped fibre (Zr-EDF) and Black phosphorus saturable absorber. Optik 2020, 223, 165635. [Google Scholar] [CrossRef]
- Wang, C.; Peng, Q.Q.; Fan, X.W.; Liang, W.Y.; Zhang, F.; Liu, J.; Zhang, H. MXene Ti3C2Tx saturable absorber for pulsed laser at 1.3 mµ. Chin. Phys. B 2018, 27, 094214. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.H.; Wang, C.; Luo, W.F.; Feng, T.C.; Zhang, Y.; Zhang, H. Few-Layer Mxene Ti3C2Tx (T=F, O, Or OH) for Robust Pulse Generation in a Compact Er-Doped Fiber Laser. Chemnanomat 2019, 5, 1233–1238. [Google Scholar] [CrossRef]
- Muhammad, A.R.; Jafry, A.A.A.; Markom, A.M.; Rosol, A.H.A.; Harun, S.W.; Yupapin, P. Q-Switched YDFL generation by a MAX phase saturable absorber. Appl. Opt. 2020, 59, 5408–5414. [Google Scholar] [CrossRef]
- Jafry, A.A.A.; Kasim, N.; Rusdi, M.F.M.; Rosol, A.H.A.; Yusoff, R.A.M.; Muhammad, A.R.; Nizamani, B.; Harun, S.W. MAX phase based saturable absorber for mode-locked erbium-doped fiber laser. Opt. Laser Technol. 2020, 127, 106186. [Google Scholar] [CrossRef]
- Shaukat, R.A.; Khan, M.U.; Saqib, Q.M.; Chougale, M.Y.; Kim, J.; Bae, J. All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring. Sens. Actuators B-Chem. 2021, 345, 130371. [Google Scholar] [CrossRef]
- Ma, Z.Z.; Tahersima, M.H.; Khan, S.; Sorger, V.J. Two-Dimensional Material-Based Mode Confinement Engineering in Electro-Optic Modulators. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 81–88. [Google Scholar] [CrossRef]
- Qiao, H.; Huang, Z.Y.; Ren, X.H.; Liu, S.H.; Zhang, Y.P.; Qi, X.; Zhang, H. Self-Powered Photodetectors Based on 2D Materials. Adv. Opt. Mater. 2020, 8, 1900765. [Google Scholar] [CrossRef]
- Xie, X.; Sarkar, D.; Liu, W.; Kang, J.; Marinov, O.; Deen, M.J.; Banerjee, K. Low-frequency noise in bilayer MoS2 transistor. ACS Nano 2014, 8, 5633–5640. [Google Scholar] [CrossRef]
- Tiu, Z.C.; Haris, H.; Ahmad, H.; Tan, S.J. All fiber temperature sensor based on light polarization measurement utilizing graphene coated tapered fiber. Microw. Opt. Technol. Lett. 2021, 63, 1314–1318. [Google Scholar] [CrossRef]
- Song, Y.F.; Chen, Y.X.; Jiang, X.T.; Ge, Y.Q.; Wang, Y.Z.; You, K.X.; Wang, K.; Zheng, J.L.; Ji, J.H.; Zhang, Y.P.; et al. Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band. Adv. Opt. Mater. 2019, 7, 1801777. [Google Scholar] [CrossRef]
- Liu, W.; Shi, T.; Liu, M.; Wang, Q.; Liu, X.; Zhou, Q.; Lei, M.; Lu, P.; Yu, L.; Wei, Z. Nonlinear optical property and application of yttrium oxide in erbium-doped fiber lasers. Opt. Express 2021, 29, 29402–29411. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Gao, Y.; Li, X.; Lu, H.; Wang, Y.; Feng, J.-j.; Lu, J.; Ma, K.; Chen, X. Porous nickel oxide micron polyhedral particles for high-performance ultrafast photonics. Opt. Laser Technol. 2022, 146, 107546. [Google Scholar] [CrossRef]
- Wang, Y.R.; Sung, W.H.; Su, X.C.; Zhao, Y.; Zhang, B.T.; Wu, C.L.; He, G.B.; Lin, Y.Y.; Liu, H.; He, J.L.; et al. Ultralow Saturation Intensity Topological Insulator Saturable Absorber for Gigahertz Mode-Locked Solid-State Lasers. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Yang, J.N.; Ma, Y.J.; Tian, K.; Li, Y.H.; Dou, X.D.; Han, W.J.; Xu, H.H.; Liu, J.H. High-power passive Q-switching performance of a Yb:YCa4O(BO3)3 laser with a few-layer Bi2Te3 topological insulator as a saturable absorber. Opt. Mater. Express 2018, 8, 3146–3154. [Google Scholar] [CrossRef]
- Jafry, A.A.A.; Kasim, N.; Nizamani, B.; Muhammad, A.R.; Harun, S.W.; Yupapin, P.J.O. MAX phase Ti3AlC2 embedded in PVA and deposited onto D-shaped fiber as a passive Q-switcher for erbium-doped fiber laser. Optik 2020, 224, 165682. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C.J.; Huang, H.H.; Chen, S.Q.; Tang, P.H.; Wang, Z.T.; Lu, S.B.; Zhang, H.; Wen, S.C.; Tang, D.Y. Self-Assembled Topological Insulator: Bi2Se3 Membrane as a Passive Q-Switcher in an Erbium-Doped Fiber Laser. J. Lightw. Technol. 2013, 31, 2857–2863. [Google Scholar] [CrossRef]
- Zhang, G.H.; Qin, H.J.; Teng, J.; Guo, J.D.; Guo, Q.L.; Dai, X.; Fang, Z.; Wu, K.H. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett. 2009, 95, 053114. [Google Scholar] [CrossRef]
- Liu, W.; Liu, M.; Liu, X.; Wang, X.; Deng, H.-X.; Lei, M.; Wei, Z.; Wei, Z. Recent Advances of 2D Materials in Nonlinear Photonics and Fiber Lasers. Adv. Opt. Mater. 2020, 8, 1901631. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, H.; Shi, H.; Ren, J.; Yang, Q.-H.; Wang, P. Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser. Opt. Express 2015, 23, 7000–7006. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Peiguang, Y.; Zhang, G.; Zhao, J.; Li, H.; Lin, R.; Cao, G.; Duan, J.a. Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Appl. Phys. B 2014, 116, 939–946. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tang, D.Y.; Zhang, H.; Wu, X.; Bao, Q.; Loh, K.P. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett. 2010, 35, 3622–3624. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, M.; Liu, H.; Zheng, X.-W.; Ning, Q.-Y.; Luo, A.-P.; Luo, Z.-C.; Xu, W.-C. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Opt. Express 2014, 22, 10906–10913. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Yan, P.; Cao, G.; Zhao, J.; Zhang, G.; Huang, S.; Lin, R. Passively harmonic mode locking in ytterbium-doped fiber laser with graphene oxide saturable absorber. Opt. Eng. 2013, 52, 126102. [Google Scholar] [CrossRef][Green Version]
- Chen, H.-R.; Tsai, C.-Y.; Cheng, H.-M.; Lin, K.-H.; Hsieh, W.-F. Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers. Opt. Express 2014, 22, 12880–12889. [Google Scholar] [CrossRef] [PubMed]
- Lee, H. Monolayer MoS2-based high energy rectangular pulse fiber laser. Optik 2018, 174, 530–536. [Google Scholar] [CrossRef]
- Cheng, P.K.; Liu, S.; Ahmed, S.; Qu, J.; Qiao, J.; Wen, Q.; Tsang, Y.H. Ultrafast Yb-Doped Fiber Laser Using Few Layers of PdS2 Saturable Absorber. Nanomaterials 2020, 10, 2441. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, P.; Zhu, M.; Zhang, W.; Wang, G.; Fu, S. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics 2020, 9, 2557–2567. [Google Scholar] [CrossRef]
- Song, H.; Wang, Q.; Zhang, Y.; Li, L. Mode-locked ytterbium-doped all-fiber lasers based on few-layer black phosphorus saturable absorbers. Opt. Commun. 2017, 394, 157–160. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, W.; Shi, X.; Wang, J.; Ding, X.; Zhang, K.; Peng, J.; Wu, J.; Zhou, P. Black phosphorus-enabled harmonic mode locking of dark pulses in a Yb-doped fiber laser. Laser Phys. Lett. 2019, 16, 085102. [Google Scholar] [CrossRef]
- Dou, Z.; Song, Y.; Tian, J.; Liu, J.; Yu, Z.; Fang, X. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3. Opt. Express 2014, 22, 24055–24061. [Google Scholar] [CrossRef]
- Chi, C.; Lee, J.; Koo, J.; Han Lee, J. All-normal-dispersion dissipative-soliton fiber laser at 1.06 µm using a bulk-structured Bi2Te3topological insulator-deposited side-polished fiber. Laser Phys. 2014, 24, 105106. [Google Scholar] [CrossRef]
- Li, L.; Yan, P.-G.; Wang, Y.-G.; Duan, L.-N.; Sun, H.; Si, J.-H. Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited. Chin. Phys. B 2015, 24, 124204. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Boguslawski, J.; Stachowiak, D.; Tarka, J.; Zybala, R.; Mars, K.; Mikula, A.; Sobon, G.; Sotor, J.; Abramski, K. All-Normal Dispersion Yb-Doped Fiber Laser Mode-Locked by Sb2Te3 Topological Insulator; SPIE: Bellingham, WA, USA, 2016; Volume 9893. [Google Scholar]
- Li, L.; Wang, Y.; Wang, X.; Lin, T.; Sun, H. High energy mode-locked Yb-doped fiber laser with Bi2Te3 deposited on tapered-fiber. Optik 2017, 142, 470–474. [Google Scholar] [CrossRef]
- Han, X.; Zhang, H.; Zhang, C.; Li, C.; Guo, Q.; Gao, J.; Jiang, S.; Man, B. Large-energy mode-locked ytterbium-doped linear-cavity fiber laser based on chemical vapor deposition-Bi2Se3 as a saturable absorber. Appl. Opt. 2019, 58, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
SA Material | Integration Method | Operating Wavelength | 3 dB Bandwidth | Threshold (mW) | Pulse Width | Repetition Rate | Ref. |
---|---|---|---|---|---|---|---|
Graphene | Thin film | 1964.9 nm | 0.19 nm | 567 mW | 0.9–6.8 ns | 927 kHz | [38] |
GO | Thin film | 1064.1 nm | 0.477 nm | 137 mW | 2.3 ns | 1.072 MHz | [39] |
Graphene | Thin film | 1069.5 nm | 1.29 nm | 45 mW | 580 ps | 0.9 MHz | [40] |
Graphene | Tapered fiber | 1061.8 nm, 1068.8 nm | 4.5 nm, 2.16 nm | 263 mW | 2.64 ns | 1.78 MHz | [41] |
GO | Thin film | 1077.68 nm | 1.22 nm | 106.5 mW | 2.0 ns | 1.583 MHz | [42] |
GO | Thin film | 1059.7 nm | 1.93 nm | 45 mW | 189 ps | 10.05 MHz | [43] |
TMD MoS2 | Thin film | 1029.3 nm | 2.3 nm | 55 mW | 336.5 ps | 2.025 MHz | [44] |
TMD PDS2 | Side-polished fiber | 1033 nm | 3.7 nm | 160 mW | 375 ps | 24.4 MHz | [45] |
TMD PdSe2 | Thin film | 1067.37 nm | 5.22 nm | 135 mW | 767.7 ps | 3.77 MHz | [46] |
BP | Thin film | 1085.58 nm | 0.23 nm | 1322 mW | 26 ns | 13.5 MHz | [47] |
BP | Thin film | 1030.6 nm | 0.11 nm | 200 mW | 400 ps | 46.3 MHz | [47] |
BP | Thin film | 1067.1 nm | 0.11 nm | 258.6 mW | 77.2 ns | 0.39 MHz | [48] |
TI Bi2Se3 | Thin film | 1031.7 nm | 2.5 nm | 153 mW | 46 ps | 44.6 MHz | [49] |
TI Bi2Te3 | SPF | 1057.82 nm | 3.69 nm | 200 mW | 230 ps | 1.44 Mhz | [50] |
Ti Bi2Te3 | Tapered fiber | 1052.5 nm | 1.245 nm | 230 mW | 317 ps | 19.8 MHz | [51] |
Ti Sb2Te3 | SPF | 1039.4 nm | 4.25 nm | 320 mW | 380 ps | 17.07 MHz | [52] |
Ti Bi2Te3 | Tapered fiber | 1063.4 nm | 2.24 nm | 220 mW | 5.47 ns | 6.2 MHz | [53] |
TI Bi2Se3 | Thin film | 1065.08 nm | 0.025 nm | 105 mW | 398 ns | 527 kHz | [54] |
TI Bi2Se3 | Optical deposition | 1051.7 | 1.04 nm | 110.5 mW | 6.2 ns | 8.3 MHz | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haris, H.; Batumalay, M.; Tan, S.J.; Markom, A.M.; Muhammad, A.R.; Harun, S.W.; Megat Hasnan, M.M.I.; Saad, I. Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber. Crystals 2022, 12, 489. https://doi.org/10.3390/cryst12040489
Haris H, Batumalay M, Tan SJ, Markom AM, Muhammad AR, Harun SW, Megat Hasnan MMI, Saad I. Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber. Crystals. 2022; 12(4):489. https://doi.org/10.3390/cryst12040489
Chicago/Turabian StyleHaris, Hazlihan, Malathy Batumalay, Sin Jin Tan, Arni Munira Markom, Ahmad Razif Muhammad, Sulaiman Wadi Harun, Megat Muhammad Ikhsan Megat Hasnan, and Ismail Saad. 2022. "Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber" Crystals 12, no. 4: 489. https://doi.org/10.3390/cryst12040489
APA StyleHaris, H., Batumalay, M., Tan, S. J., Markom, A. M., Muhammad, A. R., Harun, S. W., Megat Hasnan, M. M. I., & Saad, I. (2022). Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber. Crystals, 12(4), 489. https://doi.org/10.3390/cryst12040489