Phenol Derivatives as Co-Crystallized Templates to Modulate Trimesic-Acid-Based Hydrogen-Bonded Organic Molecular Frameworks
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Compounds
2.2. Crystal Structure Determination
3. Results and Discussion
3.1. Description of Structures
3.1.1. Quaternary Compound [(TMA)4·(TMB)3] (1)
3.1.2. Quaternary Compound [(TMA)2·(DMB)1.5] (2)
3.1.3. Quaternary Compound [(TMA)6·(MP)] (3)
3.1.4. Quaternary Compounds [(TMA)·(EP)] (4) and [(TMA)·(PP)] (5)
3.2. Thermogravimetric Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, C.V.K. Crystal Engineering Where Do We Go from Here. Cryst. Growth Des. 2002, 2, 465–474. [Google Scholar] [CrossRef]
- Bernstein, J.; Davey, R.J.; Henck, J.O. Concomitant Polymorphs. Angew. Chem. Int. Ed. 1999, 38, 3340–3461. [Google Scholar] [CrossRef]
- James, S.L. Metal-Organic Frameworks. Chem. Soc. Rev. 2003, 32, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular Synthesis and the Design of New Materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Natarajan, S.; Vaidhyanathan, R. Metal Carboxylates with Open Architectures. Angew. Chem. Int. Ed. 2004, 43, 1466–1496. [Google Scholar] [CrossRef]
- Desiraju, G.R. Cryptic Crystallography. Nat. Mater. 2002, 1, 77–79. [Google Scholar] [CrossRef]
- Lin, R.B.; He, Y.; Li, P.; Wang, H.; Zhou, W.; Chen, B. Multifunctional Porous Hydrogen-Bonded Organic Framework Materials. Chem. Soc. Rev. 2019, 48, 1362–1389. [Google Scholar] [CrossRef]
- Hisaki, I.; Xin, C.; Takahashi, K.; Nakamura, T. Designing Hydrogen-Bonded Organic Frameworks (HOFs) with Permanent Porosity. Angew. Chem. Int. Ed. 2019, 58, 11160–11170. [Google Scholar] [CrossRef]
- Wang, B.; Lin, R.B.; Zhang, Z.; Xiang, S.; Chen, B. Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. J. Am. Chem. Soc. 2020, 142, 14399–14416. [Google Scholar] [CrossRef]
- Duchamp, D.J.; Marsh, R.E. The Crystal Structure of Trimesic Acid (Benzene-l, 3, 5-Triearboxylic Acid). Acta Crystallogr. Sect. B 1969, 25, 5–19. [Google Scholar] [CrossRef]
- Hosseini, M.W.; Cian, A.D. Crystal Engineering: Molecular Networks Based on Inclusion Phenomena. Chem. Commun. 1998, 727–734. [Google Scholar] [CrossRef]
- Zaworotko, M.J. Superstructural Diversity in Two Dimensions: Crystal Engineering of Laminated Solids. Chem. Commun. 2001, 1–9. [Google Scholar] [CrossRef]
- Robinson, J.M.A.; Philip, D.; Harris, K.D.M.; Kariuki, B.M. Weak Interactions in Crystal Engineering—Understanding the Recognition Properties of the Nitro Group. New J. Chem. 2000, 24, 799–806. [Google Scholar] [CrossRef]
- Chatterjee, S.; Pedireddi, V.R.; Ranganathan, A.; Rao, C.N.R. Self-Assembled Four-Membered Networks of Trimesic Acid Forming Organic Channel Structures. J. Mol. Struct. 2000, 520, 107–115. [Google Scholar] [CrossRef]
- Kolotuchin, S.V.; Fenlon, E.E.; Wilson, R.W.; Loweth, C.J.; Zimmerman, S.C. Self-Assembly of 1,3,5-benzenetricarboxylic acids (Trimesic Acids) and Several Analogues in the Solid State. Angew. Chem. Int. Ed. Engl. 1995, 34, 2654–2657. [Google Scholar] [CrossRef]
- Kolotuchin, S.V.; Thiessen, P.A.; Fenlon, E.E.; Wilson, S.R.; Loweth, C.J.; Zimmerman, S.C. Self-Assembly of 1,3,5-benzenetricarboxylic (Trimesic) Acid and its Analogues. Chem. Eur. J. 1999, 5, 2537–2547. [Google Scholar] [CrossRef]
- Dewa, T.; Endo, K.; Aoyama, Y. Dynamic Aspects of Lattice Inclusion Complexation Involving a Phase Change. Equilibrium, Kinetics, and Energetics of Guest-Binding to a Hydrogen-Bonded Flexible Organic Network. J. Am. Chem. Soc. 1998, 120, 8933–8940. [Google Scholar] [CrossRef]
- Krupp, F.; Frey, W.; Richert, C. Absolute Configuration of Small Molecules by Co-Crystallization. Angew. Chem. Int. Ed. 2020, 59, 15875–15879. [Google Scholar] [CrossRef] [PubMed]
- Tyler, A.R.; Ragbirsingh, R.; McMonagle, C.J.; Waddell, P.G.; Heaps, S.E.; Steed, J.W.; Thaw, P.; Hall, M.J.; Probert, M.R. Encapsulated Nanodroplet Crystallization of Organic-Soluble Small Molecules. Chem 2020, 6, 1755–1765. [Google Scholar] [CrossRef]
- Bhatt, M.B.; Desiraju, G.R. Co-Crystal Formation and the Determination of Absolute Configuration. CrystEngComm 2008, 10, 17471749. [Google Scholar] [CrossRef]
- Bryn, M.P.; Curtis, C.J.; Hsiou, Y.; Khan, S.I.; Sawin, P.A.; Kendrick, S.K.; Terzis, A.; Strouse, C.E. Porphyrin Sponges: Conservative of Host Structure in over 200 Porphyrin-Based Lattice Clathrates. J. Am. Chem. Soc. 1993, 115, 9480–9497. [Google Scholar] [CrossRef]
- Gruber, T.; Fischer, C.; Seichter, W.; Bombicz, P.; Weber, E. Upper Rim Site Lipophilic Calix[4]arenes as Receptors for Natural Terpenes and Functionally Related Solvent Molecules: Combined Crystal Structure and QMB Sensor Study. CrystEngComm 2011, 13, 1422–1431. [Google Scholar] [CrossRef]
- Ceborska, M. Structural Investigation of the β-cyclodextrin Complexes with Linalool and Isopinocampheol—Influence of Monoterpenes Cyclicity on the Host-Guest Stoichiometry. Chem. Phys. Lett. 2016, 651, 192–197. [Google Scholar] [CrossRef]
- Yan, Y.C.; Kariuki, B.M.; Hughes, C.E.; Logsdail, A.J.; Harris, K.D.M. Polymorphism in a Multicomponent Crystal System of Trimesic Acid and t-butylamine. Cryst. Growth Des. 2020, 20, 5736–5744. [Google Scholar] [CrossRef]
- Ibenskas, A.; Simenas, M.; Tornau, E.E. Numerical Engineering of Molecular Self-Assemblies in a Binary System of Trimesic and Benzenetribenzoic Acids. J. Phys. Chem. C 2016, 120, 6669–6680. [Google Scholar] [CrossRef]
- Goldyn, M.R.; Larowska, D.; Bartoszak-Adamska, E. Novel purine alkaloid cocrystals with trimesic and hemimellitic acids as coformers: Synthetic approach and supramolecular analysis. Cryst. Growth Des. 2021, 21, 396–413. [Google Scholar] [CrossRef]
- Rajput, L.; Jana, N.; Biradha, K. Carboxylic acid and phenolic hydroxyl interactions in the crystal structures of co-crystals/clathrates of trimesic acid and pyromellitic acid with phenolic derivatives. Cryst. Growth Des. 2010, 10, 4565–4570. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Saha, B.K. Guest-induced isomerization of net and polymorphism in trimesic acid-arylamine complexes. Cryst. Growth Des. 2011, 11, 2194–2204. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
Compound | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Empirical formula | C126H121O66 | C30H27O15 | C115H80O74 | C17H16O8 | C18H18O8 |
Formula weight | 2691.22 | 627.51 | 2645.79 | 348.30 | 362.32 |
Temperature (K) | 296(2) | 173(2) | 173(2) | 296(2) | 296(2) |
Crystal size (mm) | 0.20 × 0.20 × 0.20 | 0.46 × 0.32 × 0.28 | 0.20 × 0.20 × 0.20 | 0.42 × 0.36 × 0.28 | 0.48 × 0.36 × 0.28 |
Crystal system | Monoclinic | Triclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | C2/c | P−1 | C2/c | C2/c | C2/c |
a (Å) | 16.715(5) | 7.706(2) | 26.2843(4) | 12.577(9) | 12.860(3) |
b (Å) | 28.504(8) | 13.570(3) | 16.4064(2) | 9.631(7) | 9.681(2) |
c (Å) | 14.879(7) | 15.392(3) | 26.3167(3) | 27.072(20) | 27.377(5) |
α (°) | 90 | 110.579(2) | 90 | 90 | 90 |
β (°) | 112.843(3) | 96.250(3) | 90.104(1) | 97.067(9) | 96.884(2) |
γ (°) | 90 | 97.720(3) | 90 | 90 | 90 |
Volume (Å3) | 6533(4) | 1472.0(6) | 11348.6(3) | 3254.0(4) | 3383.8(12) |
Z | 2 | 2 | 4 | 8 | 8 |
Dc (g·cm−3) | 1.368 | 1.416 | 1.549 | 1.422 | 1.422 |
μ (mm−1) | 0.112 | 0.115 | 1.159 | 0.114 | 0.113 |
F(000) | 2810 | 654 | 5448 | 1456 | 1520 |
Reflections collected | 32175 | 16547 | 62726 | 17875 | 18282 |
Unique reflections (Rint) | 6062 (0.0310) | 6531 (0.0239) | 9093 (0.0335) | 3730 (0.0342) | 3480 (0.0204) |
Data/constraint/parameters | 6062/1062/720 | 6531/6/427 | 9093/79/900 | 3730/1/233 | 3480/1/242 |
Goodness-of-fit on F2 | 1.033 | 1.061 | 1.057 | 1.045 | 1.053 |
Final R indices [I > 2σ(I)] | R1 = 0.0762 wR2 = 0.2074 | R1 = 0.0488 wR2 = 0.1396 | R1 = 0.0480 wR2 = 0.1429 | R1 = 0.0499 wR2 = 0.1347 | R1 = 0.0663 wR2 = 0.1891 |
R indices (all data) | R1 = 0.1140 wR2 = 0.2339 | R1 = 0.0662 wR2 = 0.1561 | R1 = 0.0513 wR2 = 0.1460 | R1 = 0.0762 wR2 = 0.1519 | R1 = 0.0824 wR2 = 0.2052 |
Largest diff. peak and hole (e·Å−3) | 0.568 and −0.404 | 0.355 and −0.389 | 0.417 and −0.571 | 0.275 and −0.202 | 0.678 and −0.322 |
(1) | ||||
D–H···A | d(D–H) | d(H···A) | d(D···A) | <(DHA) |
O1_1–H1_1···O3_2#1 | 0.82 | 1.83 | 2.63 | 168.3 |
O3_1–H3A_1···O1_2#5 | 0.82 | 1.83 | 2.64 | 170.6 |
O2_2–H2A_2···O2_1#4 | 1.03 | 1.62 | 2.64 | 169.0 |
O3_2–H3A_2···O1_1#1 | 0.82 | 1.83 | 2.63 | 168.0 |
O2_3–H2_3···O1_3#3 | 0.96 | 1.68 | 2.64 | 176.5 |
O3_3–H3A_3···O4_3#1 | 0.82 | 1.84 | 2.65 | 168.1 |
O6_3–H6A_3···O5_3#2 | 0.96 | 1.68 | 2.64 | 176.3 |
Symmetry codes: #1 −x + 1, −y + 1, −z + 1; #2 −x + 1/2, −y + 1/2, −z + 1; #3 −x + 3/2, −y + 1/2, −z + 1; #4 x−1/2, −y + 1/2, z − 1/2; #5 x + 1/2, −y + 1/2, z + 1/2. | ||||
(2) | ||||
D–H…A | d(D–H) | d(H···A) | d(D···A) | <(DHA) |
O1–H1D···O12#1 | 0.88 | 1.73 | 2.62 | 176.0 |
O7–H7D···O4 | 0.87 | 1.73 | 2.59 | 173.0 |
O6–H6D···O9#2 | 0.88 | 1.73 | 2.59 | 167.0 |
O3–H3D···O8 | 0.86 | 1.75 | 2.60 | 176.0 |
O10–H10D···O5#3 | 0.89 | 1.72 | 2.60 | 170.0 |
O11–H11D···O2#4 | 0.88 | 1.74 | 2.61 | 173.0 |
Symmetry codes: #1 x + 1, y, z + 1; #2 x + 1, y − 1, z; #3 x − 1, y + 1, z; #4 x−1, y, z−1. | ||||
(3) | ||||
D–H···A | d(D–H) | d(H···A) | d(D···A) | <(DHA) |
O15-H15···O26#7 | 0.84 | 1.76 | 2.60 | 174.5 |
O9-H9···O18#11 | 0.84 | 1.83 | 2.65 | 168.3 |
O33-H33···O33#3 | 0.84 | 1.81 | 2.63 | 165.3 |
O12-H12···O13#10 | 0.84 | 1.82 | 2.64 | 166.3 |
O14-H14···O11#10 | 0.84 | 1.87 | 2.69 | 167.9 |
O17-H17···O10#11 | 0.84 | 1.77 | 2.60 | 175.2 |
O7-H7B···O4#9 | 0.84 | 1.80 | 2.64 | 175.0 |
O27-H27B···O36#5 | 0.84 | 1.80 | 2.63 | 170.0 |
O25-H25B···O16#7 | 0.84 | 1.81 | 2.65 | 176.3 |
O5-H5B···O22#2 | 0.84 | 1.78 | 2.61 | 168.4 |
O32-H32B···O29#5 | 0.84 | 1.80 | 2.63 | 169.4 |
O30-H30···O31#6 | 0.84 | 1.78 | 2.61 | 168.0 |
O21-H21B···O6#1 | 0.84 | 1.82 | 2.65 | 168.8 |
O35-H35B···O28#6 | 0.84 | 1.78 | 2.62 | 172.1 |
O2-H2B···O23 | 0.84 | 1.82 | 2.65 | 172.4 |
O34-H34B···O34 | 0.84 | 1.84 | 2.65 | 160.2 |
O20-H20B···O20#4 | 0.84 | 1.81 | 2.64 | 167.6 |
O3-H3B···O8#8 | 0.84 | 1.77 | 2.61 | 173.7 |
O19-H19···O19#4 | 0.84 | 1.83 | 2.65 | 164.3 |
O24-H24B···O1 | 0.84 | 1.78 | 2.62 | 172.7 |
Symmetry codes: #1 x, y − 1, z; #2 x, y + 1, z; #3 −x + 1, y, −z + 1/2; #4 −x + 1, y, −z + 3/2; #5 −x + 1/2, y + 1/2, −z + 1/2; #6 −x + 1/2, y − 1/2, −z + 1/2; #7 −x + 1, −y + 1, −z + 1; #8 x, −y + 1, z − 1/2; #9 x, −y + 1, z + 1/2; #10 −x + 1/2, −y + 1/2, −z + 1; #11 −x + 1/2, −y + 3/2, −z + 1. | ||||
(4) | ||||
D–H···A | d(D–H) | d(H···A) | d(D···A) | <(DHA) |
O2-H2···O7#1 | 0.82 | 1.83 | 2.65 | 175.3 |
O4-H4···O1#2 | 0.82 | 1.86 | 2.63 | 156.4 |
O7-H7···O3 | 0.82 | 1.93 | 2.74 | 169.0 |
O5-H5D···O6#3 | 0.89 | 1.74 | 2.63 | 175(2) |
Symmetry codes: #1 x, y + 1, z; #2 x, y − 1, z; #3 −x + 3/2, −y + 3/2, −z + 1. | ||||
(5) | ||||
D–H···A | d(D–H) | d(H···A) | d(D···A) | <(DHA) |
O1-H1···O7#1 | 0.82 | 1.84 | 2.65 | 171.2 |
O7-H7···O6#2 | 0.82 | 1.94 | 2.75 | 169.7 |
O5-H5···O2#3 | 0.82 | 1.89 | 2.64 | 151.7 |
O4-H4D···O3#4 | 0.99 | 1.65 | 2.64 | 176.0 |
Symmetry codes: #1 x − 1, y − 1, z; #2 x + 1, y, z; #3 x, y + 1, z; #4 −x + 1/2, −y + 1/2, −z + 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, G.; Wang, Q.; Zhou, Q.; Wang, X. Phenol Derivatives as Co-Crystallized Templates to Modulate Trimesic-Acid-Based Hydrogen-Bonded Organic Molecular Frameworks. Crystals 2021, 11, 409. https://doi.org/10.3390/cryst11040409
Ou G, Wang Q, Zhou Q, Wang X. Phenol Derivatives as Co-Crystallized Templates to Modulate Trimesic-Acid-Based Hydrogen-Bonded Organic Molecular Frameworks. Crystals. 2021; 11(4):409. https://doi.org/10.3390/cryst11040409
Chicago/Turabian StyleOu, Guangchuan, Qiong Wang, Qiang Zhou, and Xiaofeng Wang. 2021. "Phenol Derivatives as Co-Crystallized Templates to Modulate Trimesic-Acid-Based Hydrogen-Bonded Organic Molecular Frameworks" Crystals 11, no. 4: 409. https://doi.org/10.3390/cryst11040409
APA StyleOu, G., Wang, Q., Zhou, Q., & Wang, X. (2021). Phenol Derivatives as Co-Crystallized Templates to Modulate Trimesic-Acid-Based Hydrogen-Bonded Organic Molecular Frameworks. Crystals, 11(4), 409. https://doi.org/10.3390/cryst11040409