Flux Method Growth of Large Size Group IV–V 2D GeP Single Crystals and Photoresponse Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystal Growth of GeP by Bi Flux Method
2.2. Crystal Structure and Composition Characterization
2.3. ARPRS Measurements
2.4. Transmission Spectra
2.5. Photoresponse Measurements
3. Results and Discussion
3.1. Bulk GeP Single Crystal Growth
3.2. XRD and Laue Measurements
3.3. Raman and EPMA Measurements
3.4. Anisotropic Optical Properties
3.5. Photoresponse Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sensale-Rodriguez, B.; Yan, R.; Kelly, M.M.; Fang, T.; Tahy, K.; Hwang, W.S.; Jena, D.; Liu, L.; Xing, H.G. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 2012, 3, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Huang, D.; Cheng, J.; Fan, X.; Zhang, Z.; Shan, Y.; Yi, Y.; Dai, Y.; Shi, L.; Liu, K.; et al. Author Correction: Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photonics 2018, 12, 634. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. Tuning a circular p-n junction in graphene from quantum confinement to optical guiding. Nat. Nanotechnol. 2017, 12, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.Z.; Hong, S.H.; Song, J.K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater. 2014, 13, 394–399. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Martinez, A.; Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics 2013, 7, 842–845. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Q.; Kian, P. Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano 2012, 6, 3677–3694. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ryder, C.R.; Wells, S.A.; Hersam, M.C. Resolving the In-Plane Anisotropic Properties of Black Phosphorus. Small Methods 2017, 1, 0143–0152. [Google Scholar] [CrossRef]
- Liu, H.; Du, Y.; Deng, Y.; Ye, P.D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458–5458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, D.K.; Wang, H.; Guo, Z.; Xie, N.; Zhang, H. Recent Developments in Stability and Passivation Techniques of Phosphorene toward Next-Generation Device Applications. Adv. Funct. Mater. 2019, 10, 3419–3441. [Google Scholar] [CrossRef]
- Lee, B.C.; Kim, C.M.; Jang, H.K.; Lee, J.W.; Joo, M.-K.; Kim, G.-T. Degradation pattern of black phosphorus multilayer field−effect transistors in ambient conditions: Strategy for contact resistance engineering in BP transistors. Appl. Surf. Sci. 2017, 419, 637–641. [Google Scholar] [CrossRef]
- Li, C.; Wang, S.; Li, C.; Yu, T.; Jia, N.; Qiao, J.; Zhu, M.; Liu, D.; Tao, X. Highly sensitive detection of polarized light using a new group IV-V 2D orthorhombic SiP. J. Mater. Chem. C 2018, 6, 7219–7225. [Google Scholar] [CrossRef]
- Li, L.; Gong, P.; Sheng, D.; Wang, S.; Wang, W.; Zhu, X.; Shi, X.; Wang, F.; Han, W.; Yang, S.; et al. Highly In-Plane Anisotropic 2D GeAs2 for Polarization-Sensitive Photodetection. Adv. Mater. 2018, 10, 4541–4550. [Google Scholar] [CrossRef]
- Yang, S.; Yang, Y.; Wu, M.; Hu, C.; Shen, W.; Gong, Y.; Huang, L.; Jiang, C.; Zhang, Y.; Ajayan, P.M. Highly In-Plane Optical and Electrical Anisotropy of 2D Germanium Arsenide. Adv. Funct. Mater. 2018, 28, 1707379. [Google Scholar] [CrossRef]
- Li, L.; Wang, W.; Gong, P.; Zhu, X.; Deng, B.; Shi, X.; Gao, G.; Li, H.; Zhai, T. 2D GeP: An Unexploited Low-Symmetry Semiconductor with Strong In-Plane Anisotropy. Adv. Mater. 2018, 30, 6771–6780. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Ma, Y.; Zhu, E.; Lee, S.; Lu, Z.; Zhao, Z.; Xu, C.; Lee, S.J.; Wu, H.; et al. Few-Layer GeAs Field-Effect Transistors and Infrared Photodetectors. Adv. Mater. 2018, 30, 5934–5940. [Google Scholar] [CrossRef]
- Zhou, Z.; Long, M.; Pan, L.; Wang, X.; Zhong, M.; Blei, M.; Wang, J.; Fang, J.; Tongay, S.; Hu, W.; et al. Perpendicular Optical Reversal of the Linear Dichroism and Polarized Photodetection in 2D GeAs. ACS Nano 2018, 10, 2269–2279. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, S.; Huang, Y.; Zhu, Z.; Cai, B.; Xie, M.; Zhou, W.; Zeng, H. Two-dimensional SiP: An unexplored direct band-gap semiconductor. 2D Mater. 2016, 4, 1833–1838. [Google Scholar] [CrossRef]
- Lee, K.; Synnestvedt, S.; Bellard, M. GeP and (Ge1 − xSnx)(P1 − yGey) (x ≈ 0.12, y ≈ 0.05): Synthesis, structure, and properties of two-dimensional layered tetrel phosphides. J. Solid State Chem. 2015, 224, 0022–4596. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.-B.; Cao, S.; Yang, M. Strain behavior and Carrier mobility for novel two-dimensional semiconductor of GeP: First principles calculations. Phys. E 2019, 107, 124–130. [Google Scholar] [CrossRef]
- Yu, T.; Nie, H.; Wang, S.; Zhang, B.; Zhao, S.; Wang, Z.; Qiao, J.; Han, B.; He, J.; Tao, X. Two-Dimensional GeP-Based Broad-Band Optical Switches and Photodetectors. Adv. Opt. Mater. 2019, 8, 1490–1499. [Google Scholar] [CrossRef]
- Guo, J.; Huang, D.; Zhang, Y.; Yao, H.; Wang, Y.; Zhang, F.; Wang, R.; Ge, Y.; Song, Y.; Guo, Z.; et al. 2D GeP as a Novel Broadband Nonlinear Optical Material for Ultrafast Photonics. Laser Photonics Rev. 2019, 13, 0123–0133. [Google Scholar] [CrossRef]
- Kim, D.; Park, K.; Shojaei, F.; Debela, T.T.; Kwon, I.S.; Kwak, I.H.; Seo, J.; Ahn, J.P.; Park, J.; Kang, H.S. Thickness-dependent bandgap and electrical properties of GeP nanosheets. J. Mater. Chem. A 2019, 7, 16526–16532. [Google Scholar] [CrossRef]
- Shen, H.; Ma, Z.; Yang, B.; Guo, B.; Lyu, Y.; Wang, P.; Yang, H.; Li, Q.; Wang, H.; Liu, Z.; et al. Sodium storage mechanism and electrochemical performance of layered GeP as anode for sodium ion batteries. J. Power Sources 2019, 433, 6682–6690. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Yu, J.; Liao, J.; Zhao, B.; Huang, L.; Ali, A.; Zhang, H.; Wang, J.H.; Guo, Z.; et al. A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy. Nano Energy 2019, 61, 594–603. [Google Scholar] [CrossRef]
- Barreteau, C.; Michon, B.; Besnard, C.; Giannini, E. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. J. Cryst. Growth 2016, 443, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Buscema, M.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; van der Zant, H.S.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | Normalized Mass (%) | Mol (%) |
---|---|---|
Ge | 70.353 | 50.312 |
P | 29.647 | 49.688 |
Total | 100.000 | 100.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Yu, T.; Wang, Z.; Wang, S.; Wei, L.; Chen, X.; Wang, S. Flux Method Growth of Large Size Group IV–V 2D GeP Single Crystals and Photoresponse Application. Crystals 2021, 11, 235. https://doi.org/10.3390/cryst11030235
Zhao S, Yu T, Wang Z, Wang S, Wei L, Chen X, Wang S. Flux Method Growth of Large Size Group IV–V 2D GeP Single Crystals and Photoresponse Application. Crystals. 2021; 11(3):235. https://doi.org/10.3390/cryst11030235
Chicago/Turabian StyleZhao, Shuqi, Tongtong Yu, Ziming Wang, Shilei Wang, Limei Wei, Xiaohua Chen, and Shanpeng Wang. 2021. "Flux Method Growth of Large Size Group IV–V 2D GeP Single Crystals and Photoresponse Application" Crystals 11, no. 3: 235. https://doi.org/10.3390/cryst11030235
APA StyleZhao, S., Yu, T., Wang, Z., Wang, S., Wei, L., Chen, X., & Wang, S. (2021). Flux Method Growth of Large Size Group IV–V 2D GeP Single Crystals and Photoresponse Application. Crystals, 11(3), 235. https://doi.org/10.3390/cryst11030235