Faster Microwave-Assisted Synthesis of Microspherical Carbons from Commercial and Biomass-Derived Carbohydrates
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of Xylose Extract Solution from Almond Shells
3.2.2. Preparation of Microspherical Carbons
3.2.3. Activation of Microspherical Carbons
3.2.4. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CONV | Conventional heating |
EDX | Energy Dispersive X-ray spectroscopy |
ESEM | Environmental scanning electron microscopy |
GLU | Glucose |
5-HMF | 5-Hydroxymethylfurfural |
MW | Microwaves |
SAC | Saccharose |
TGA | Thermogravimetry |
XYL | Xylose |
References
- Yenisoy-Karakaş, S.; Aygün, A.; Güneş, M.; Tahtasakal, E. Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorb organics. Carbon 2004, 42, 477–484. [Google Scholar] [CrossRef]
- Romero-Anaya, A.J.; Lillo-Ródenas, M.A.; Linares-Solano, A. Spherical activated carbons for low concentration toluene adsorption. Carbon 2010, 48, 2625–2633. [Google Scholar] [CrossRef]
- Romero-Anaya, A.J.; Ouzzine, M.; Lillo-Ródenas, M.A.; Linares-Solano, A. Spherical carbons: Synthesis, characterization and activation processes. Carbon 2014, 68, 296–307. [Google Scholar] [CrossRef]
- Liu, J.; Wickramaratne, N.P.; Qiao, S.Z.; Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 2015, 14, 763–774. [Google Scholar] [CrossRef]
- Bedin, K.C.; Cazetta, A.L.; Souza, I.P.A.F.; Pezoti, O.; Souza, L.S.; Souza, P.S.C.; Yokoyama, J.T.C.; Almedia, V.C. Porosity enhancement of spherical activated carbon: Influence and optimization of hydrothermal synthesis conditions using response surface methodology. J. Environ. Chem. Eng. 2018, 6, 991–999. [Google Scholar] [CrossRef]
- Ouzzine, M.; Romero-Anaya, A.J.; Lillo-Ródenas, M.A.; Linares-Solano, A. Spherical activated carbons for the adsorption of a real multicomponent VOC mixture. Carbon 2019, 148, 214–223. [Google Scholar] [CrossRef]
- Bedin, K.C.; Souza, I.P.A.F.; Cazetta, A.L.; Spessato, L.; Ronix, A.; Almeida, V.C. CO2-spherical activated carbon as a new adsorbent for Methylene Blue removal: Kinetic, equilibrium and thermodynamic studies. J. Mol. Liq. 2018, 269, 132–139. [Google Scholar] [CrossRef]
- Zhang, Q.; Meng, Y.; Bai, Y.; Li, M. Sulfur and nitrogen in-situ co-doped hierarchical spherical porous carbon for efficient lithium storage. J. Electroanal. Chem. 2020, 862, 114013. [Google Scholar] [CrossRef]
- Sun, N.; Sun, C.; Liu, H.; Liu, J.; Stevens, L.; Drage, T.; Snape, C.E.; Li, K.; Wei, W.; Sun, Y. Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture. Fuel 2013, 113, 854–862. [Google Scholar] [CrossRef]
- Eguchi, M.; Okubo, A.; Yamamoto, S.; Kikuchi, M.; Uno, K.; Kobayashi, Y.; Nishitani-Gamo, M.; Ando, T. Preparation of catalyst for a polymer electrolyte fuel cell using a novel spherical carbon support. J. Power Sources 2010, 195, 5862–5867. [Google Scholar] [CrossRef]
- Ouzzine, M.; Romero-Anaya, A.J.; Lillo-Ródenas, M.A.; Linares-Solano, A. Spherical activated carbon as an enhanced support for TiO2/AC photocatalysts. Carbon 2014, 67, 104–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Yan, L.; Wang, G.; Liu, A. Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coord. Chem. Rev. 2019, 391, 69–89. [Google Scholar] [CrossRef]
- Saleh, T.A.; Ali, I. Synthesis of polyamide grafted carbon microspheres for removal of rhodamine B dye and heavy metals. J. Environ. Chem. Eng. 2018, 6, 5361–5368. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, L.; Xiang, H.; Wang, Y.; Sun, X. Biomass-based carbon microspheres for removing heavy metals from the environment: A review. Mater. Today Sustain. 2022, 18, 100136. [Google Scholar] [CrossRef]
- Zhu, J.; Liao, L.; Bian, X.; Kong, J.; Yang, P.; Liu, B. pH-Controlled Delivery of Doxorubicin to Cancer Cells, Based on Small Mesoporous Carbon Nanospheres. Small 2012, 8, 2715–2720. [Google Scholar] [CrossRef] [PubMed]
- Tagliavini, M.; Schäfer, A.I. Removal of steroid micropollutants by polymer-based spherical activated carbon (PBSAC) assisted membrane filtration. J. Hazard. Mater. 2018, 353, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, J.; Xing, W.; Liu, B.; Zhang, J.; Lin, H.; Cui, H.; Zhuo, S. Resorcinol–formaldehyde resin-based porous carbon spheres with high CO2 capture capacities. J. Energy Chem. 2017, 26, 1007–1013. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, X.Y.; Zhang, R.; Liu, C.J.; Liu, X.J.; Qiao, W.; Zhan, L.; Ling, L. Preparation of polystyrene-based activated carbon spheres and their adsorption of dibenzothiophene. New Carbon Mater. 2009, 24, 55–60. [Google Scholar] [CrossRef]
- Wang, D.; Chen, M.; Wang, C.; Bai, J.; Zheng, J. Synthesis of carbon microspheres from urea formaldehyde resin. Mater. Lett. 2011, 65, 1069–1072. [Google Scholar] [CrossRef]
- Romero-Anaya, A.J.; Lillo-Ródenas, M.A.; Salinas-Martínez de Lecea, C.; Linares-Solano, A. Hydrothermal and conventional H3PO4 activation of two natural bio-fibers. Carbon 2012, 50, 3158–3169. [Google Scholar] [CrossRef]
- Chen, W.H.; Ye, S.C.; Sheen, H.K. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour. Technol. 2012, 118, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Shi, W.; Chen, X.; Ni, W.; Strong, P.J.; Jia, Y.; Wang, H. Hydrothermal conversion of water lettuce biomass at 473 or 523 K. Biomass Bioenergy 2011, 35, 4855–4861. [Google Scholar] [CrossRef]
- Jiahao, W.; Weiquan, C. One-step hydrothermal preparation of N-doped carbon spheres from peanut hull for efficient removal of Cr(VI). J. Environ. Chem. Eng. 2020, 8, 104449. [Google Scholar] [CrossRef]
- Heilmann, S.M.; Davis, H.T.; Jader, L.R.; Lefebvre, P.A.; Sadowsky, M.J.; Schendel, F.J.; von Keitz, M.G.; Valentasa, K.J. Hydrothermal carbonization of microalgae. Biomass Bioenergy 2010, 34, 875–882. [Google Scholar] [CrossRef]
- AnhCao, K.L.; Rahmatika, A.M.; Kitamoto, Y.; Nguyen, M.T.T.; Ogi, T. Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin. J. Colloid Interface Sci. 2021, 589, 252–263. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef]
- Wang, F.L.; Pang, L.L.; Jiang, Y.Y.; Chen, B.; Lin, D.; Lun, N.; Zhu, H.L.; Liu, R.; Meng, X.L.; Wang, Y.; et al. Simple synthesis of hollow carbon spheres from glucose. Mater. Lett. 2009, 63, 2564–2566. [Google Scholar] [CrossRef]
- Gámez, S.; Lozada, A.B.; Guevara, A.; de la Torre, E. A green and easy way for carbon microspheres synthesis impregnated with palladium for hexavalent chromium reduction. J. Environ. Chem. Eng. 2019, 7, 103467. [Google Scholar] [CrossRef]
- Yao, C.; Shin, Y.; Wang, L.Q.; Windisch, C.F.; Samuels, W.D.; Arey, B.W.; Wang, C.; Risen, W.M.; Exarhox, G.J. Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System. J. Phys. Chem. C 2007, 111, 15141–15145. [Google Scholar] [CrossRef]
- Titirici, M.M.; Antonietti, M.; Baccile, N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 2008, 10, 1204–1212. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod Biorefin. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Román, S.; Nabais, J.M.V.; Laginhas, C.; Ledesma, B.; González, J.F. Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process. Technol. 2012, 103, 78–83. [Google Scholar] [CrossRef]
- Guiotoku, M.; Rambo, C.R.; Hansel, F.A.; Magalhães, W.L.E.; Hotza, D. Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater. Lett. 2009, 63, 2707–2709. [Google Scholar] [CrossRef]
- Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 2011, 36, 2328–2342. [Google Scholar] [CrossRef]
- Schuhmacher, J.P.; Huntjens, F.J.; Van-Krevelen, D.W. Chemical structure and properties of coal XXVI—Studies on artificial coalification. Fuel 1960, 39, 223–234. [Google Scholar]
- Berl, E.; Schimdt, A. Die Inkohlung von cellulose und lignin in neutralem medium. Liebigs Ann. Chem. 1932, 493, 97–123. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Chen, L.; Huang, X. Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001, 39, 2211–2214. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. Engl. 2004, 43, 3827–3831. [Google Scholar] [CrossRef]
- Sevilla, M.; Maciá-Agulló, J.A.; Fuertes, A.B. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass Bioenergy 2011, 35, 3152–3159. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chem. Eur. J. 2009, 15, 4195–4203. [Google Scholar] [CrossRef]
- Sevilla, M.; Lota, G.; Fuertes, A.B. Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation. J. Power Sources 2007, 171, 546–551. [Google Scholar] [CrossRef]
- Zhao, L.; Baccile, N.; Gross, S.; Zhang, Y.; Wei, W.; Sun, Y.; Antonietti, M.; Titirici, M.M. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon 2010, 48, 3778–3787. [Google Scholar] [CrossRef]
- Falco, C.; Baccile, N.; Titirici, M.M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem. 2011, 13, 3273–3281. [Google Scholar] [CrossRef]
- Baccile, N.; Laurent, G.; Babonneau, F.; Fayon, F.; Titirici, M.M.; Antonietti, M. Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations. J. Phys. Chem. C 2009, 113, 9644–9654. [Google Scholar] [CrossRef]
- Demir-Cakana, R.; Makowski, P.; Antonietti, M.; Goettmann, F.; Titirici, M.M. Hydrothermal synthesis of imidazole functionalized carbon spheres and their application in catalysis. Catal. Today 2010, 150, 115–118. [Google Scholar] [CrossRef]
- Yu, L.; Brun, N.; Sakaushi, K.; Eckert, J.; Titirici, M.M. Hydrothermal nanocasting: Synthesis of hierarchically porous carbon monoliths and their application in lithium–sulfur batteries. Carbon 2013, 61, 245–253. [Google Scholar] [CrossRef]
- Matos, J.; Rosales, M.; Demir-Cakan, R.; Titirici, M.M. Methane conversion on Pt–Ru nanoparticles alloy supported on hydrothermal carbon. Appl. Catal. A Gen. 2010, 386, 140–146. [Google Scholar] [CrossRef]
- Laszlo, T.S. Industrial applications of microwaves. Phys. Teach. 1980, 18, 570–579. [Google Scholar] [CrossRef]
- Gebretsadik, F.B.; Mance, D.; Baldus, M.; Salagre, P.; Cesteros, Y. Microwave synthesis of delaminated acid saponites using quaternary ammonium salt or polymer as template. Study of pH influence. Appl. Clay Sci. 2015, 114, 20–30. [Google Scholar] [CrossRef]
- Granados-Reyes, J.; Salagre, P.; Cesteros, Y. Effect of microwaves, ultrasounds and interlayer anion on the hydrocalumites synthesis. Micropor. Mesopor. Mater. 2014, 199, 117–124. [Google Scholar] [CrossRef]
- Sánchez, T.; Salagre, P.; Cesteros, Y. Ultrasounds and microwave-assisted synthesis of mesoporous hectorites. Micropor. Mesopor. Mater. 2013, 171, 24–34. [Google Scholar] [CrossRef]
- Salema, A.A.; Ani, F.N. Microwave induced pyrolysis of oil palm biomass. Bioresour Technol. 2011, 102, 3388–3395. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, B.; Huang, Y.; Wang, Y.; Chen, J.; Wei, D.; Feng, Y.; Jia, D.; Zhou, Y. Molten salt synthesis of nitrogen and oxygen enriched hierarchically porous carbons derived from biomass via rapid microwave carbonization for high voltage supercapacitors. Appl. Surf. Sci. 2018, 439, 712–723. [Google Scholar] [CrossRef]
- Liew, R.K.; Chai, C.; Yek, P.N.Y.; Phang, X.Y.; Chong, M.Y.; Nam, W.L.; Su, M.H.; Lam, W.H.; Ma, N.L.; Lam, S.S. Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation. J. Clean. Prod. 2019, 208, 1436–1445. [Google Scholar] [CrossRef]
- Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.G.; Bermúdez, J.M. Microwave heating processes involving carbon materials. Fuel Process Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef]
- Shi, N.; Liu, Q.; He, X.; Wang, G.; Chen, N.; Peng, J.; Ma, L. Molecular structure and formation mechanism of hydrochar from hydrothermal carbonization of carbohydrates. Energy Fuels 2019, 33, 9904–9915. [Google Scholar] [CrossRef]
- van Zandvoort, I.; Wang, Y.; Rasrendra, C.B.; van Eck, E.R.H.; Bruijnincx, P.C.A.; Heeres, H.J.; Weckhuysen, B.M. Formation, molecular structure, and morphology of humins in biomass conversion: Influence of feedstock and processing conditions. ChemSusChem 2013, 6, 1745–1758. [Google Scholar] [CrossRef]
- Falco, C.; Perez Caballero, F.; Babonneau, F.; Gervais, C.; Laurent, G.; Titirici, M.M.; Baccile, N. Hydrothermal carbon from biomass: Structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. Langmuir 2011, 27, 14460–14471. [Google Scholar] [CrossRef]
- Titirici, M.-M. Sustainable Carbon Materials from Hydrothermal Processes, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 75–100. [Google Scholar] [CrossRef]
- Xiang, Q.; Lee, Y.; Torget, R. Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl. Biochem. and Biotechnol. 2004, 115, 1127–1138. [Google Scholar] [CrossRef]
- Li, K.; Liu, S.; Shu, T.; Yan, L.; Guo, H.; Dai, Y.; Luo, X.; Luo, S. Fabrication of carbon microspheres with controllable porous structure by using waste Camellia oleifera shells. Mater. Chem. Phys. 2016, 181, 518–528. [Google Scholar] [CrossRef]
- Wang, S.; Yue, X.; Zhao, X.; Yuan, H. Preparation of a carbon microsphere-based solid acid application to waste frying oil transesterification. Diam. Relat. Mater. 2021, 116, 108420. [Google Scholar] [CrossRef]
- Sánchez, V.; Dafinov, A.; Salagre, P.; Llorca, J.; Cesteros, Y. Microwave-Assisted Furfural Production Using Hectorites and Fluorohectorites as Catalysts. Catalysts 2019, 9, 706. [Google Scholar] [CrossRef]
- Muñoz-Guillena, M.J.; Linares-Solano, A.; Salinas-Martínez de Lecea, C. Determination of calorific values of coals by differential thermal analysis. Fuel 1992, 71, 579–583. [Google Scholar] [CrossRef]
Sample | C (wt %) | O (wt %) | S (wt %) | P (wt %) |
---|---|---|---|---|
S15 | 69.3 | 30.7 | -- | -- |
S60 | 71.1 | 28.9 | -- | -- |
G60-S | 66.5 | 33.5 | -- | -- |
G60-P25 | 68.3 | 31.5 | -- | 0.2 |
G60-(2.6) | 71.6 | 28.4 | -- | -- |
G60-S(2.6) | 73.7 | 26.2 | -- | -- |
G60-P(2.6) | 67.4 | 32.6 | -- | -- |
G60-P25(2.6) | 72.3 | 27.6 | -- | 0.1 |
X60-S | 64.6 | 35.4 | -- | -- |
X60-P | 69.3 | 30.7 | -- | -- |
X60-P25 | 66.5 | 33.4 | -- | 0.1 |
X60-(2.6) | 72.0 | 28.0 | -- | -- |
X60-S(2.6) | 71.2 | 28.7 | 0.10 | -- |
X60-P(2.6) | 72.2 | 27.8 | -- | -- |
X60-P25(2.6) | 67.9 | 31.9 | -- | 0.2 |
X120-S(2.6) | 72.6 | 27.1 | 0.30 | -- |
X120-P25(2.6) | 74.6 | 25.3 | -- | 0.2 |
X15-biomass | 67.5 | 32.9 | 0.04 | -- |
X60-biomass | 67.5 | 32.5 | 0.05 | -- |
Sample | B.E.T. Surface Area (m2/g) | Average Pore Size (nm) | Micropore Volume (cc/g) |
---|---|---|---|
X60-biomass | 5 | 6.0 | 0.007 |
X60-biomass-AC5 | 243 | 1.1 | 0.129 |
X60-biomass-AC10 | 258 | 1.1 | 0.144 |
X60-biomass-AC20 | 326 | 1.1 | 0.148 |
Sample Name | Carbohydrate | Carbohydrate Concentration | Reaction Medium | Heating | Heating Time (min) |
---|---|---|---|---|---|
S15 | Saccharose | 1.6 M | H2O | Mw | 15 |
S60 | Saccharose | 1.6 M | H2O | Mw | 60 |
G15 | Glucose | 1.6 M | H2O | Mw | 15 |
G60 | Glucose | 1.6 M | H2O | Mw | 60 |
X15 | Xylose | 1.6 M | H2O | Mw | 15 |
X60 | Xylose | 1.6 M | H2O | Mw | 60 |
G60-S | Glucose | 1.6 M | 1% v/v H2SO4 | Mw | 60 |
G60-P | Glucose | 1.6 M | 1% v/v H3PO4 | Mw | 60 |
G60-P25 | Glucose | 1.6 M | 25% v/v H3PO4 | Mw | 60 |
G60(2.6) | Glucose | 2.6 M | H2O | Mw | 60 |
G60-S(2.6) | Glucose | 2.6 M | 1% v/v H2SO4 | Mw | 60 |
G60-P(2.6) | Glucose | 2.6 M | 1% v/v H3PO4 | Mw | 60 |
G60-P25(2.6) | Glucose | 2.6 M | 25% v/v H3PO4 | Mw | 60 |
X60-S | Xylose | 1.6 M | 1% v/v H2SO4 | Mw | 60 |
X60-P | Xylose | 1.6 M | 1% v/v H3PO4 | Mw | 60 |
X60-P25 | Xylose | 1.6 M | 25% v/v H3PO4 | Mw | 60 |
X60(2.6) | Xylose | 2.6 M | H2O | Mw | 60 |
X60-S(2.6) | Xylose | 2.6 M | 1% v/v H2SO4 | Mw | 60 |
X60-P(2.6) | Xylose | 2.6 M | 1% v/v H3PO4 | Mw | 60 |
X60-P25(2.6) | Xylose | 2.6 M | 25% v/v H3PO4 | Mw | 60 |
X120-S(2.6) | Xylose | 2.6 M | 1% v/v H2SO4 | Mw | 120 |
X120-P25(2.6) | Xylose | 2.6 M | 25% v/v H3PO4 | Mw | 120 |
X60(2.6)C | Xylose | 2.6 M | H2O | Conv | 60 |
X60-S(2.6)C | Xylose | 2.6 M | 1% v/v H2SO4 | Conv | 60 |
X60-P(2.6)C | Xylose | 2.6 M | 1% v/v H3PO4 | Conv | 60 |
X15-biomass | Xylose from almond shells | 0.2 M | Extract acid aqueous medium | Mw | 15 |
X60-biomass | Xylose from almond shells | 0.2 M | Extract acid aqueous medium | Mw | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Anaya, A.J.; González, M.D.; Granados-Reyes, J.; Arrieche-Hernández, L.E.; Cesteros, Y. Faster Microwave-Assisted Synthesis of Microspherical Carbons from Commercial and Biomass-Derived Carbohydrates. Catalysts 2025, 15, 885. https://doi.org/10.3390/catal15090885
Romero-Anaya AJ, González MD, Granados-Reyes J, Arrieche-Hernández LE, Cesteros Y. Faster Microwave-Assisted Synthesis of Microspherical Carbons from Commercial and Biomass-Derived Carbohydrates. Catalysts. 2025; 15(9):885. https://doi.org/10.3390/catal15090885
Chicago/Turabian StyleRomero-Anaya, Aroldo J., M. Dolores González, Judith Granados-Reyes, Leví E. Arrieche-Hernández, and Yolanda Cesteros. 2025. "Faster Microwave-Assisted Synthesis of Microspherical Carbons from Commercial and Biomass-Derived Carbohydrates" Catalysts 15, no. 9: 885. https://doi.org/10.3390/catal15090885
APA StyleRomero-Anaya, A. J., González, M. D., Granados-Reyes, J., Arrieche-Hernández, L. E., & Cesteros, Y. (2025). Faster Microwave-Assisted Synthesis of Microspherical Carbons from Commercial and Biomass-Derived Carbohydrates. Catalysts, 15(9), 885. https://doi.org/10.3390/catal15090885