Carbon and Silica Supports Enhance the Durability and Catalytic Performance of Cobalt Oxides Derived from Cobalt Benzene-1,3,5-Tricarboxylate Complex
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of Metal-Oxide Nanocomposite Catalysts
2.2. UV–Visible Absorption Spectra
2.3. FTIR Spectra
2.4. SEM and EDX Analysis
2.5. TEM Analysis
2.6. XRD Analysis
2.7. Catalytic Study
2.8. Batch Chemical Catalytic Experiment and Regeneration
2.9. Mechanism of Reduction of PNP by Cobalt Oxide Nanocomposites
2.10. Comparative Studies
3. Experimental Section
3.1. Chemicals
3.2. Characterizations
3.3. Synthesis of Cobalt Complexes
- -
- Synthesis of Co(BTC) complex:
- -
- Synthesis of Co(BTC)/PC complex:
- -
- Synthesis of Co(BTC)/NS complex:
3.4. Synthesis of Co3O4 and Nanocomposites
- -
- Synthesis of Co3O4: 0.1 gm of Co(BTC) complex in a crucible covered with a lid was treated in an air furnace oven at 425 °C for 1 h with a heating ramp rate of 10 °C/min, then cooled slowly to room temperature to obtain black powder of Co3O4 (yield 0.042 gm).
- -
- Synthesis of Co3O4/PC: 0.05 gm of Co(BTC)/PC complex in a crucible covered with a lid was treated in an air furnace at 425 °C for 1 h. After cooling to room temperature, a fine black powder (0.0147 gm) was obtained.
- -
- Synthesis of Co3O4/NS: 0.153 gm of Co(BTC)/NS complex in a crucible covered with a lid was treated in an air furnace at 425 °C for 1 h, then cooled slowly to room temperature yielding a fine black powder (0.05 gm).
3.5. Catalytic Reduction Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimoga, G.; Palem, R.R.; Lee, S.-H.; Kim, S.-Y. Catalytic Degradability of p-Nitrophenol Using Ecofriendly Silver Nanoparticles. Metals 2020, 10, 1661. [Google Scholar] [CrossRef]
- Bruhn, C.; Lenke, H.; Knackmuss, H.-J. Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl. Environ. Microbiol. 1987, 53, 208–210. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Feng, C.; Gao, S.; Shang, N.; Wang, Z. Multifunctional Pd@MOF core–shell nanocomposite as highly active catalyst for p-nitrophenol reduction. Catal. Commun. 2015, 72, 29–32. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, H.; Zhang, W.; Lai, B.; Yao, G. Removal of nitrophenols and their derivatives by chemical redox: A review. Chem. Eng. J. 2019, 359, 13–31. [Google Scholar] [CrossRef]
- Riaz, M.; Sharafat, U.; Zahid, N.; Ismail, M.; Park, J.; Ahmad, B.; Rashid, N.; Fahim, M.; Imran, M.; Tabassum, A. Synthesis of Biogenic Silver Nanocatalyst and their Antibacterial and Organic Pollutants Reduction Ability. ACS Omega 2022, 7, 14723–14734. [Google Scholar] [CrossRef] [PubMed]
- Yahya, A.A.; Rashid, K.T.; Ghadhban, M.Y.; Mousa, N.E.; Majdi, H.S.; Salih, I.K.; Alsalhy, Q.-F. Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance. Materials 2021, 11, 171. [Google Scholar] [CrossRef]
- Xu, J.; Wang, B.; Zhang, W.H.; Zhang, F.J.; Deng, Y.D.; Wang, Y.; Gao, J.J.; Tian, Y.S.; Peng, R.H.; Yao, Q.-H. Biodegradation of p-nitrophenol by engineered strain. AMB Expr. 2021, 11, 124. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Mariam, E.; Krishnamurthy, S.; Sundaram, S.; Mallick, T.-K. Effectual visible light photocatalytic reduction of para-nitro phenol using reduced graphene oxide and ZnO composite. Sci. Rep. 2023, 13, 9521. [Google Scholar]
- Zhang, H.; Fei, C.; Zhang, D.; Tang, F. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. J. Hazard. Mater. 2006, 145, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Modirshahla, N.; Behnajady, M.A.; Aghdam, S.-M. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. J. Hazard. Mater. 2008, 154, 778–786. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, P.; Xu, X.; Yang, J. Removal of p-Nitrophenol by Adsorption with 2-Phenylimidazole-Modified ZIF-8. Molcules 2023, 28, 4195. [Google Scholar] [CrossRef]
- Su, T.; Wang, M.; Xianyu, B.; Wang, K.; Gao, P.; Lu, C. Electrochemical treatment of simulated wastewater containing nitroaromatic compound with cobalt–titanium electrode. Chemosphere 2024, 364, 143141. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, S.; Chen, J. A review on membrane fouling in water treatment: Causes, mitigation and future directions. Water Res. 2018, 134, 190–207. [Google Scholar]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Sangamnere, R.; Misra, T.; Bherwani, H.; Kapley, A.; Kumar, R. A critical review of conventional and emerging wastewater treatment technologies. Sustain. Water Resour. Manag. 2023, 9, 58. [Google Scholar] [CrossRef]
- Adeniyi, A.O. A comparative review of the traditional and modern methods of water treatment. J. Adv. Biol. Biotechnol. 2020, 23, 44–51. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Removal of pharmaceuticals and personal care products from water by advanced oxidation processes: A review. Sci. Total Environ. 2016, 627, 707–731. [Google Scholar]
- Wang, F.; Zhang, W.; Tan, X.; Wang, Z.; Li, Y.; Li, W. Extract of Ginkgo biloba leaves mediated biosynthesis of catalytically active and recyclable silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019, 563, 31–36. [Google Scholar] [CrossRef]
- Chauhan, G.; Chauhan, S.; Soni, S.; Kumar, A.; Negi, D.S.; Bahadur, I. Catalytic reduction of 4-nitrophenol using synthesized and characterized CoS@MorphcdtH/CoS@4-MPipzcdtH nanoparticles. J. Chin. Chem. Soc. 2023, 70, 879–893. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y. Efficient catalytic reduction of 4-nitrophenol using Co3O4 nanoparticles supported on carbon nanofibers. Appl. Catal. B 2019, 243, 305–313. [Google Scholar]
- Bukhamsin, H.A.; Hammud, H.H.; Awada, C.; Prakasam, T. Catalytic reductive degradation of 4-Nitrophenol and methyl orange by novel cobalt oxide nanocomposites. Catalysts 2024, 14, 89. [Google Scholar] [CrossRef]
- Mogudi, B.M.; Ncube, P.; Meijboom, R. Catalytic activity of mesoporous cobalt oxides with controlled porosity and crystallite sizes: Evaluation using the reduction of 4-nitrophenol. Appl Catal. B 2016, 198, 74–82. [Google Scholar] [CrossRef]
- Nordin, N.R.; Shamsuddin, M. Biosynthesis of copper(II) oxide nanoparticles using Murayya koeniggi aqueous leaf extract and its catalytic activity in 4- nitrophenol reduction. Mal. J. Fund. Appl. Sci. 2019, 15, 218–224. [Google Scholar]
- Kumar, S.; Singh, R.N. Recyclable cobalt oxide catalysts for nitroaromatic compound reduction. ACS Sustain. Chem. Eng. 2020, 8, 2101–2110. [Google Scholar]
- Das, T.K.; Das, N.C. Advances on catalytic reduction of 4-nitrophenol by nanostructured materials as benchmark reaction. Int. Nano Lett. 2022, 12, 223–242. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Selloni, A. Electronic structure and bonding properties of cobalt oxide in the spinel structure. J Phys. Rev. B 2011, 83, 245204. [Google Scholar] [CrossRef]
- Farhadi, S.; Sepahdar, A.; Jahanara, K. Spinel-Type Cobalt Oxide (Co3O4) Nanoparticles from the mer-Co(NH3)3(NO2)3 Complex: Preparation, Characterization, and Study of Optical and Magnetic Properties. JNS 2013, 3, 199–207. [Google Scholar]
- Khalaji, A.D. Synthesis, Characterization and Optical Properties of Co3O4 Nanoparticles. Asian J. Nanosci. Mater. 2019, 2, 186–190. [Google Scholar]
- Meng, T.; Xu, Q.-Q.; Wang, Z.-H.; Li, Y.-T.; Gao, Z.-M.; Xing, X.-Y.; Ren, T.-Z. Co3O4 Nanorods with Self-assembled Nanoparticles in Queue for Supercapacitor. Electrochim. Acta 2015, 180, 104–111. [Google Scholar] [CrossRef]
- Bhargava, R.; Khana, S.; Ahmad, N.; Ansari, M.M.N. Investigation of Structural, Optical and Electrical Properties of Co3O4 Nanoparticles. AIP Conf. Proc. 2018, 1953, 030034. [Google Scholar] [CrossRef]
- Daranfed, W.; Guermat, N.; Mirouh, K. Experimental Study of Precursor Concentration the Co3O4 Thin Films Used as Solar Absorbers. Ann. Chim.—Sci. Des Matériaux 2020, 44, 121–126. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Li, H.; Lu, J.; Fu, Q.; Zhang, L. Hydrothermal synthesis of cobalt oxide porous nanoribbons anchored with reduced graphene oxide for hydrogen peroxide detection. J. Nanopart. Res. 2016, 18, 232. [Google Scholar] [CrossRef]
- Belles, L.; Moularas, C.; Smykała, S.; Deligiannakis, Y. Flame Spray Pyrolysis Co3O4/CoO as Highly-Efficient Nanocatalyst for Oxygen Reduction Reaction. Nanomaterials 2021, 11, 925. [Google Scholar] [CrossRef]
- Hammud, H.H.; Aljamhi, W.A.; Al-Hudairi, D.E.; Parveen, N.; Ansari, S.A.; Mazher, J.; Adam, M.M.S.; Prakasam, T. Synergistic Effects of Bismuth, Cobalt, and Nickel on Cobalt-Carbon Nanocomposites for Catalytic Reduction and Supercapacitor Applications. Top. Catal. 2025. [Google Scholar] [CrossRef]
- Hammud, H.H.; Traboulsi, H.; Karnati, R.K.; Hussain, S.G.; Bakir, E.M. Hierarchical Graphitic Carbon-Encapsulating Cobalt Nanoparticles for Catalytic Hydrogenation of 2,4-Dinitrophenol. Catalysts 2022, 12, 39. [Google Scholar] [CrossRef]
- Chen, H.; Yang, M.; Liu, Y.; Yue, J.; Chen, G. Influence of Co3O4 Nanostructure Morphology on the Catalytic Degradation of p-Nitrophenol. Molecules 2023, 28, 7396. [Google Scholar] [CrossRef]
- Liu, K.; Ling, M.; Zhang, Q.-Q.; Wu, K.-L.; Ye, Y.; Wei, X.-W. High-efficiency and Recyclable Catalysts of Co3O4 Hierarchical Microstructures for p-Nitrophenol Reduction. Chem. Lett. 2018, 47, 1207–1209. [Google Scholar] [CrossRef]
- Elbayoumy, E.; Ibrahim, E.M.; El-Bindary, A.; Nakano, T.; Aboelnga, M. Revealing an Efficient Copper Oxide Nanoparticle Catalyst for the Reduction of the Hazardous Nitrophenol: Experimental and DFT Studies. Mater. Adv. 2025. [Google Scholar] [CrossRef]
- Hammud, H.H.; Aljamhi, W.A.; Al-Hudairi, D.E.; Parveen, N.; Ansari, S.A.; Prakasam, T. Catalytic and Capacitive Properties of Hierarchical Carbon–Nickel Nanocomposites. Catalysts 2024, 14, 181. [Google Scholar] [CrossRef]
- Bagheri, M.; Masoomi, M.Y.; Forneli, A.; García, H. Quasi Metal-Organic Framework Based on Cobalt for Improved Catalytic Conversion of Aquatic Pollutant 4-Nitrophenol. J. Phys. Chem. C 2022, 126, 683–692. [Google Scholar] [CrossRef]
- Mondal, A.; Mondal, A.; Adhikary, B.; Mukherjee, D.K. Cobalt nanoparticles as reusable catalysts for reduction of 4-nitrophenol under mild conditions. Bull. Mater. Sci. 2017, 40, 321–328. [Google Scholar] [CrossRef]
- Hammud, H.H.; Aljamhi, W.A.; Parveen, N.; Ansari, S.A.; Baig, N.; Shetty, S.; Alameddine, B.; Sah, A.K.; Parikh, A. Bifunctional catalytic and capacitive properties of CoC and CoC/Zn derived from cobalt complex pyrolysis. Res. Chem. Intermed. 2025, 51, 811–837. [Google Scholar] [CrossRef]
- Hasan, Z.; Cho, D.W.; Chon, C.M.; Yoon, K.; Song, H. Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks. Chem. Eng. J. 2016, 298, 183–190. [Google Scholar] [CrossRef]
Catalyst | PNP mg | No. of Cycles | Duration of All Cycles (min) | First-Order Rate Constant k min−1 (R2) | TON mg PNP/mg Nano (mmol PNP/mg nano) | TOF (mg PNP/mg nano)/min (mmol PNP/mg nano)/min |
---|---|---|---|---|---|---|
Co3O4 | 1.31 | 46.70 | 152 | 0.4591 (0.9719) | 3.27 (0.024) | 0.0215 (1.5 × 10−4) |
Co3O4/PC | 1.48 | 52.67 | 178 | 0.4053 (0.9717) | 3.67 (0.026) | 0.0206 (1.4 × 10−4) |
Co3O4/NS | 1.54 | 54.22 | 218 | 0.3837 (0.9595) | 3.79 (0.027) | 0.0174 (1.2 × 10−4) |
Catalyst * | Rate Constant | Reference |
---|---|---|
quasi-CoMOF (TMU-10) | 1.68 min−1 | [40] |
Co–NP | 0.210 min−1 | [41] |
CoC-NC | 0.128 min−1 | [42] |
Co3O4NC | 0.0925 min−1 | [21] |
Co3O4NP (meso-Co-150) | 3.20 × 10−4 mol m−2 min−1 | [22] |
Co3O4NP | 0.46 min−1 | Present work |
Co3O4/PC | 0.41 min−1 | |
Co3O4/NS | 0.38 min−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammud, H.H.; Aljamhi, W.A.; AlAbdullah, K.; Humayun, M.; Shawish, I. Carbon and Silica Supports Enhance the Durability and Catalytic Performance of Cobalt Oxides Derived from Cobalt Benzene-1,3,5-Tricarboxylate Complex. Catalysts 2025, 15, 881. https://doi.org/10.3390/catal15090881
Hammud HH, Aljamhi WA, AlAbdullah K, Humayun M, Shawish I. Carbon and Silica Supports Enhance the Durability and Catalytic Performance of Cobalt Oxides Derived from Cobalt Benzene-1,3,5-Tricarboxylate Complex. Catalysts. 2025; 15(9):881. https://doi.org/10.3390/catal15090881
Chicago/Turabian StyleHammud, Hassan H., Waleed A. Aljamhi, Kawther AlAbdullah, Muhammad Humayun, and Ihab Shawish. 2025. "Carbon and Silica Supports Enhance the Durability and Catalytic Performance of Cobalt Oxides Derived from Cobalt Benzene-1,3,5-Tricarboxylate Complex" Catalysts 15, no. 9: 881. https://doi.org/10.3390/catal15090881
APA StyleHammud, H. H., Aljamhi, W. A., AlAbdullah, K., Humayun, M., & Shawish, I. (2025). Carbon and Silica Supports Enhance the Durability and Catalytic Performance of Cobalt Oxides Derived from Cobalt Benzene-1,3,5-Tricarboxylate Complex. Catalysts, 15(9), 881. https://doi.org/10.3390/catal15090881