DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
Abstract
1. Introduction
2. Results and Discussion
2.1. Morphological Structure Analysis
2.2. Electrochemical Performance Evaluation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of FeOOH-Co2(OH)3Cl/NF Catalyst
3.3. Characterization
3.4. Electrochemical Performance Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hosseini, S.E. Hydrogen fuel, a game changer for the world’s energy scenario. Int. J. Green Energy 2024, 21, 1366–1382. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Duanmu, M.M.; Zhao, X.; Song, S.L.; Duan, L.Y.; Ma, Z.P.; Song, A.L.; Shao, G. Stably Improving the Catalytic Activity of Oxygen Evolution Reactions via Two-Dimensional Graphene Oxide-Incorporated NiFe-Layered Double Hydroxides. Catalysts 2024, 14, 278. [Google Scholar] [CrossRef]
- Akdag, O. The operation and applicability to hydrogen fuel technology of green hydrogen production by water electrolysis using offshore wind power. J. Clean. Prod. 2023, 425, 138863. [Google Scholar] [CrossRef]
- Zou, X.X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.L.; Wu, R.B.; Liu, Y.; Ha, Y.; Guo, Y.H.; Sun, D.L.; Liu, M.; Fang, F. Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction. Adv. Mater. 2018, 30, 1802011–1802020. [Google Scholar] [CrossRef]
- Chen, J.L.; Qian, J.J. Insights on MOF-derived metal-carbon nanostructures for oxygen evolution. Dalton Trans. 2024, 53, 2903–2916. [Google Scholar] [CrossRef]
- Li, T.H.; Wang, Y.G.; Chen, T.T.; Wang, G.Z.; Qiu, C.T.; Hu, W.H. Ionic liquid in-situ functionalized carbon nanotube film as self-supported metal-free electrocatalysts for oxygen evolution. Chem. Eng. J. 2024, 484, 149767. [Google Scholar] [CrossRef]
- Jiang, F.; Li, Y.C.; Pan, Y. Design Principles of Single-Atom Catalysts for Oxygen Evolution Reaction: From Targeted Structures to Active Sites. Adv. Mater. 2024, 36, 2306309–2306318. [Google Scholar] [CrossRef]
- Song, J.J.; Wei, C.; Huang, Z.F.; Liu, C.T.; Zeng, L.; Wang, X.; Xu, Z.C.J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.P.; Zhong, H.Y.; Xi, X.B.; Lee, W.S.V.; Xue, J.M. Understanding of Oxygen Redox in the Oxygen Evolution Reaction. Adv. Mater. 2022, 34, 2107956–2107982. [Google Scholar] [CrossRef]
- Zhang, N.; Cui, P.F.; Zhang, J.R.; Yang, Q. MOF-Derived Electrocatalysts for High-Efficiency Hydrogen Production via Water Electrolysis. Catalysts 2025, 15, 579. [Google Scholar] [CrossRef]
- Fabbri, E.; Schmidt, T.J. Oxygen Evolution Reaction—The Enigma in Water Electrolysis. ACS Catal. 2018, 8, 9765–9774. [Google Scholar] [CrossRef]
- Shi, Y.M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.Z.; Sun, S.N.; Song, J.J.; Xi, S.B.; Du, Y.H.; Chen, B.; Sasangka, W.A.; Liao, H.B.; Gan, C.L.; Scherer, G.G.; et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772. [Google Scholar] [CrossRef]
- Han, X.; Guo, C.; Wang, H.; Xu, W.J.; Liu, Q.L.; Zhao, Q.S.; Wu, M.B. Defect-Rich Co(OH)2 Induced by Carbon Dots for Oxygen Evolution Reaction. Catalysts 2025, 15, 219. [Google Scholar] [CrossRef]
- Gao, H.L.; Yang, T.; Dong, A.Y.; Xing, Y.L.; Liu, D.J.; Ma, Y.H.; Zhu, K.X. Recent Advances in Transition Metal Chalcogenides Electrocatalysts for Oxygen Evolution Reaction in Water Splitting. Catalysts 2025, 15, 124. [Google Scholar] [CrossRef]
- Huang, H.F.; Ning, S.L.; Xie, Y.Y.; He, Z.J.; Teng, J.; Chen, Z.D.; Fan, Y.N.; Shi, J.Y.; Barboiu, M.; Wang, D.W.; et al. Synergistic Modulation of Electronic Interaction to Enhance Intrinsic Activity and Conductivity of Fe–Co–Ni Hydroxide Nanotube for Highly Efficient Oxygen Evolution Electrocatalyst. Small 2023, 19, 2302272. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, R.; Dutta, S. Review and Outlook of Hydrogen Production through Catalytic Processes. Energy Fuels 2024, 38, 2601–2629. [Google Scholar] [CrossRef]
- Zhou, B.H.; Gao, R.J.; Zou, J.J.; Yang, H.M. Surface Design Strategy of Catalysts for Water Electrolysis. Small 2022, 18, 2202336. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.M.; Wang, K.; Lv, K.Y.; Feng, B.; Yu, X.F.; Li, L.L.; Zhang, X.H.; Yang, X.J.; Lu, Z.M. Doping of Cr to Regulate the Valence State of Cu and Co Contributes to Efficient Water Splitting. ACS Appl. Mater. Interfaces 2023, 15, 16552–16561. [Google Scholar] [CrossRef]
- Majumdar, A.; Dutta, P.; Sikdar, A.; Lee, H.; Ghosh, D.; Jha, S.N.; Tripathi, S.; Maiti, U.N. Impact of Atomic Rearrangement and Single Atom Stabilization on MoSe2@NiCo2Se4 Heterostructure Catalyst for Efficient Overall Water Splitting. Small 2022, 18, 2200622. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.J.; Yang, B.P.; Zhang, N.; Liu, M.; Chen, G.X.; Jiang, X.M.; Chen, G.; Yang, G.L.; Liu, X.H.; Chan, T.X.; et al. Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Adv. Funct. Mater. 2019, 29, 1904020. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Gao, F.; Wang, D.Q.; Li, Z.L.; Wang, X.M.; Wang, C.Q.; Zhang, K.W.; Du, Y.K. Amorphous/Crystalline Heterostructure Transition-Metal-based Catalysts for High-Performance Water Splitting. Coord. Chem. Rev. 2023, 475, 214916. [Google Scholar] [CrossRef]
- Shen, W.; Zhu, J.M.; Hu, Y.; Yin, J.; Zheng, Y.; Xi, P.X. Applications of Rare Earth Promoted Transition Metal Sulfides in Electrocatalysis. Chin. J. Chem. 2023, 41, 1740–1752. [Google Scholar] [CrossRef]
- Fan, C.; Zang, Z.; Zhang, X. Non-metal doping regulation in transition metal and their compounds for electrocatalytic water splitting. International Journal of Hydrogen Energy. Int. J. Hydrogen Energy 2024, 56, 1273–1283. [Google Scholar] [CrossRef]
- Wu, L.H.; Guan, Z.X.; Guo, D.Y.; Yang, L.; Chen, X.W.; Wang, S. High-Efficiency Oxygen Evolution Reaction: Controllable Reconstruction of Surface Interface. Small 2023, 19, 2304007. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, M.; Li, T. Preparation of Fe-doped Transition Metal Phosphides using Ionic Liquid as Precursor for Efficient Oxygen Evolution Reaction. ChemCatChem 2023, 15, e202300132. [Google Scholar] [CrossRef]
- Zhang, H.; Aierke, A.; Zhou, Y.T.; Ni, Z.T.; Feng, L.G.; Chen, A.; Wågberg, T.; Hu, G.Z. A high-performance transition-metal phosphide electrocatalyst for converting solar energy into hydrogen at 19.6% STH efficiency. Carbon Energy 2023, 5, e217. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.Z.; Liu, L.; Qin, W.J.; Liu, S.J.; Tu, J.P.; Liu, Y.D.; Qin, Y.P.; Liu, J.F.; Wu, H.Y.; et al. Facet Engineering and Pore Design Boost Dynamic Fe Exchange in Oxygen Evolution Catalysis to Break the Activity–Stability Trade-Off. J. Am. Chem. Soc. 2023, 145, 20261–20272. [Google Scholar] [CrossRef]
- Hajilo, M.; Taherinia, D. Halloysite nanotubes decorated with Co(OH)F nanorods as a novel binary composite for the enhanced electrocatalytic water oxidation. J. Electroanal Chem. 2024, 953, 118012. [Google Scholar] [CrossRef]
- Gao, W.; Li, Y.F.; Zhang, Z.; Tang, W.W.; Zhao, J.T.; Yang, T.; Wu, Z.Y.; Bao, W.W. Co(OH)F/Ni(OH)2@FeOOH core–shell heterostructure as a high-efficiency electrocatalyst with strong electron interactions towards boosting the oxygen evolution reaction. Int. J. Hydrogen Energy 2024, 51, 890–897. [Google Scholar] [CrossRef]
- Du, J.; Zhang, H.; Hu, W.; Li, Z.L.; Gao, W.S.; Wang, X.M.; Li, C. Grain boundary effects of hierarchical Ni-Fe (oxy) hydroxide nanosheets in water oxidation. Small 2023, 19, 2304245. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.R.; Huo, H.H.; Zhuang, Q.X.; Ren, X.Q.; Wen, X.X.; Yang, B.L.; Huang, X.X.; Chang, Q.W.; Li, S.W. Iron Oxyhydroxide: Structure and Applications in Electrocatalytic Oxygen Evolution Reaction. Adv. Funct. Mater. 2023, 33, 2300557. [Google Scholar] [CrossRef]
- Han, D.Y.; Hao, L.; Wang, Y.J.; Gao, Y.J.; Yan, J.L.; Zhang, Y.F. Design of iron oxyhydroxide nanosheets coated on Co species embedded in nanoporous carbon for oxygen evolution reaction. J. Colloid Interface Sci. 2023, 652, 1148–1155. [Google Scholar] [CrossRef]
- Liao, H.X.; Ni, G.H.; Tan, P.F.; Liu, K.; Liu, X.Z.; Liu, H.L.; Chen, K.J.; Zheng, X.H.; Liu, M.; Pan, J. Oxyanion Engineering Suppressed Iron Segregation in Nickel–Iron Catalysts Toward Stable Water Oxidation. Adv. Mater. 2023, 35, 2300347. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, Y.; Gao, W.; Bai, T.; Cao, T.; Jin, J.; Xin, B. Deep Eutectic Solvent-Mediated Electrocatalysts for Water Splitting. Molecules 2022, 27, 8098. [Google Scholar] [CrossRef]
- Qin, M.K.; Fan, R.X.; Chen, J.D.; Wang, H.Y.; Zheng, X.Z.; Mao, X.J.; Du, R.F.; Wang, Y. Elucidating electrocatalytic mechanism for large-scale cycloalkanol oxidation integrated with hydrogen evolution. Chem. Eng. J. 2022, 442, 136264. [Google Scholar] [CrossRef]
- Tian, J.P.; Ye, Y.H.; Zhou, J.Y.; Li, S.S.; Duan, B.W.; Shen, L.; He, B. Interface electronic coupling in NiCo2S4 nanorod-amorphous FeOOH nanosheets with enhanced catalytic activity in the oxygen evolution reaction. New J. Chem. 2025, 49, 6269–6276. [Google Scholar] [CrossRef]
- Yin, X.L.; Cai, R.; Dai, X.P.; Nie, F.; Gan, Y.H.; Ye, Y.; Ren, Z.T.; Liu, Y.J.; Wu, B.Q.; Cao, Y.H.; et al. Electronic modulation and surface reconstruction of cactus-like CoB2O4@FeOOH heterojunctions for synergistically triggering oxygen evolution reactions. J. Mater. Chem. A 2022, 10, 11386–11393. [Google Scholar] [CrossRef]
- Li, H.H.; Tan, M.Y.; Huang, C.; Luo, W.P.; Yin, S.F.; Yang, W.J. Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/NC nanosheets for efficient OER catalysis. Appl. Surf. Sci. 2021, 542, 148739. [Google Scholar] [CrossRef]
- Tang, L.; Cai, M.J.; Zhang, M.S.; Chen, X.; Cai, Z.X. LDH-assisted growth of FeCo bimetal-MOF nanorods for electrocatalytic oxygen evolution. RSC Adv. 2022, 12, 25112–25117. [Google Scholar] [CrossRef]
- Rajeshkhanna, G.; Borah, A.; Singh, T.I.; Nguyen, T.H.; Dinh, V.A.; Kim, N.H.; Lee, J.H. Counter ion-regulated heterostructured Co@Fe-based core@shell materials: As remarkable bifunctional electrodes for green H2 production. J. Mater. Chem. A 2024, 12, 24656. [Google Scholar] [CrossRef]
- Guo, B.R.; Chen, M.X.; Li, S.W.; Gao, R.H.; Sang, B.H.; Ren, X.Q.; Liu, Z.; Cao, X.; Liu, J.; Ding, Y.N.; et al. Construction of iron oxyhydroxide/nickel sulfate hydroxide hybrid electrocatalyst for efficient oxygen evolution. Rare Met. 2024, 43, 6394–6404. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Krishnan, H.S.; Eswaran, S.K.; Mani, N. Ultrathin FeOOH Layer Grown on NiCo2S4/Ni3S2 Nanosheets Supported on Nickel Foam as an Electrocatalyst for Overall Water Splitting. ACS Appl. Nano Mater. 2024, 7, 22674–22683. [Google Scholar] [CrossRef]
- Jena, R.; Kashyap, V.; Jana, R.; Mandal, T.; Das, T.N.; Rahimi, F.A.; Barman, S.; Maity, D.; Kumar, R.; Bhattacharyya, D.; et al. In Situ Tracking of Ni-MOF Reconstruction into Active Ni(OH)2 OER Catalysts. Angew. Chem. Int. Ed. 2025, e202510741. [Google Scholar]
- Huang, C.Q.; Nie, J.H.; Xu, Z.Y.; Zhang, X.H.; Tang, J.; Wang, B.; Huang, J.L.; Du, C.C.; Chen, J.H. One-step hydrothermal synthesized 3D P-MoO/FeCo LDH heterostructure electrocatalysts on Ni foam for high-efficiency oxygen evolution electrocatalysis. Int. J. Hydrogen Energy 2021, 46, 12992–13000. [Google Scholar] [CrossRef]
- Khrizanforov, M.N.; Samorodnova, A.P.; Bezkishko, I.A.; Gainullin, R.R.; Kholin, K.V.; Gubaidullin, A.T.; Shekurov, R.P.; Miluykov, V.A. 2D coordination polymers of transition metals as catalysts for oxygen evolution reaction. Mater. Rep. Energy 2025, 5, 100334. [Google Scholar] [CrossRef]
- Kuang, Y.B.; He, R.Z.; Gu, X.C.; Yang, F.L.; Tian, X.L.; Feng, L.G. High polarity catalyst of CoFe alloy/fluoride interconnected by bamboo-like nitrogen-doped carbon nanotubes for efficient oxygen evolution reaction. Chem. Eng. J. 2023, 456, 141055. [Google Scholar] [CrossRef]
- Zhu, J.M.; Zi, S.J.; Zhang, N.; Hu, Y.; An, L.; Xi, P.X. Surface Reconstruction of Covellite CuS Nanocrystals for Enhanced OER Catalytic Performance in Alkaline Solution. Small 2023, 19, 2301762. [Google Scholar] [CrossRef]
- Pang, Z.H.; Cui, F.; Ma, Q.H.; Cui, T.Y. Optimizing the electronic structure of Fe sites to enhance their redox performance by introducing Ce(Ⅳ)-O-Fe electron bridges in Ce-FeOOH for efficient oxygen evolution reaction. Appl. Surf. Sci. 2025, 708, 163602. [Google Scholar] [CrossRef]
Material | Substrate | Current Density (mA cm−2) | η (mV) | Tafel Slope (mV dec−1) | Reference |
---|---|---|---|---|---|
FeOOH-Co2(OH)3Cl/NF | NF | 100 | 197 | 65.9 | This work |
NiCo2S4/FeOOH NF | NF | 100 | 385.6 | 80.4 | [38] |
CoB2O4@FeOOH/NF | NF | 100 | 260 | 116.9 | [39] |
Co3O4/NC | NC | 100 | 264 | 80 | [40] |
FeCo-MOF | - | 100 | 475 | 121.8 | [41] |
Co2P@Fe2P/NF | NF | 50 | 267 | 65.0 | [42] |
FeOOH/NiSH/NF | NF | 50 | 265 | 73.8 | [43] |
FeOOH/NCS/NS/NF | NF | 50 | 285 | 93 | [44] |
Ni(OH)2-MD | - | 10 | 300 | 104 | [45] |
P-MoO3/FeCo LDH/NF | NF | 10 | 225 | 87.4 | [46] |
Cd-2D | - | 10 | 236 | 98 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Liu, Y.; Yan, Y.; Wang, H.; Zhang, Y.; Xin, Y.; Xu, W.; Zhao, Q. DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction. Catalysts 2025, 15, 725. https://doi.org/10.3390/catal15080725
Zhu B, Liu Y, Yan Y, Wang H, Zhang Y, Xin Y, Xu W, Zhao Q. DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction. Catalysts. 2025; 15(8):725. https://doi.org/10.3390/catal15080725
Chicago/Turabian StyleZhu, Bingxian, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu, and Qingshan Zhao. 2025. "DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction" Catalysts 15, no. 8: 725. https://doi.org/10.3390/catal15080725
APA StyleZhu, B., Liu, Y., Yan, Y., Wang, H., Zhang, Y., Xin, Y., Xu, W., & Zhao, Q. (2025). DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction. Catalysts, 15(8), 725. https://doi.org/10.3390/catal15080725