Facile Synthesis of 4-(Methoxycarbonyl)phenyl 5-Arylfuran-2-Carboxylates via Readily Available Pd Catalyst–Their Thermodynamic, Spectroscopic Features and Nonlinear Optical Behavior
Abstract
1. Introduction
2. Results and Discussion
2.1. DFT Studies
2.2. Analysis of FMO (Frontier Molecular Orbital) and Hyperpolarizability:
2.3. Molecular Electrostatic Potential (MEP) Analysis
2.4. Reactivity Parameters
3. Materials and Methods
3.1. General Remarks
3.2. Experimental Protocol for Synthesis of 4-(Methoxycarbonyl)phenyl 5-Bromofuran-2-Carboxylate (3)
3.3. General Protocol for Synthesis of 4-(Methoxycarbonyl)phenyl 5-Bromofuran-2-Carboxylate Derivatives (5a–5e)
3.4. Characterization
3.4.1. 4-(Methoxycarbonyl)phenyl 5-Bromofuran-2-Carboxylate (3)
3.4.2. 4-(Methoxycarbonyl)phenyl 5-(3,5-Dimethylphenyl)furan-2-Carboxylate (5a)
3.4.3. 4-(Methoxycarbonyl)phenyl 5-(4-Chlorophenyl)furan-2-Carboxylate (5b)
3.4.4. 4-(Methoxycarbonyl)phenyl 5-(3,4-Dichlorophenyl)furan-2-Carboxylate (5c)
3.4.5. 4-(Methoxycarbonyl)phenyl 5-(Thiophen-3-yl)furan-2-Carboxylate (5d)
3.4.6. 4-(Methoxycarbonyl)phenyl 5-(3-Chloro-4-Fluorophenyl)furan-2-Carboxylate (5e)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazeer, W.; Qamar, M.U.; Rasool, N.; Taibi, M.; Salamatullah, A.M. Synthesis of 2-Ethylhexyl 5-Bromothiophene-2-Carboxylates; Antibacterial Activities against Salmonella Typhi, Validation via Docking Studies, Pharmacokinetics, and Structural Features Determination through DFT. Molecules 2024, 29, 3005. [Google Scholar] [CrossRef] [PubMed]
- Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep learning for computational chemistry. J. Comput. Chem. 2017, 38, 1291–1307. [Google Scholar] [CrossRef] [PubMed]
- Hales, J.M.; Matichak, J.; Barlow, S.; Ohira, S.; Yesudas, K.; Brédas, J.-L.; Perry, J.W.; Marder, S.R. Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit. Science 2010, 327, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wei, R.; Guo, Q.; Zhao, Y.J.; Qiu, J. Reverse Saturable Absorption Induced by Phonon-Assisted Anti-Stokes Processes. Adv. Mater. 2018, 30, 1801638. [Google Scholar] [CrossRef]
- Guo, Q.; Yao, Y.; Luo, Z.-C.; Qin, Z.; Xie, G.; Liu, M.; Kang, J.; Zhang, S.; Bi, G.; Liu, X. Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals. ACS Nano 2016, 10, 9463–9469. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Zhang, M.; Liu, Z.; Wu, J.; Zhou, H.; Yang, J.; Zhang, S.; Tian, Y. Nonlinear optical response and biological applications of a series of pyrimidine-based molecules for copper (II) ion probe. Dalton Trans. 2013, 42, 8848–8853. [Google Scholar] [CrossRef]
- González-Urbina, L.; Baert, K.; Kolaric, B.; Pérez-Moreno, J.; Clays, K. Linear and nonlinear optical properties of colloidal photonic crystals. Chem. Rev. 2012, 112, 2268–2285. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ouyang, C.; Huo, F.; He, W.; Cao, A. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials. Dyes Pigments 2020, 181, 108509. [Google Scholar] [CrossRef]
- Xu, H.; Liu, F.; Elder, D.L.; Johnson, L.E.; de Coene, Y.; Clays, K.; Robinson, B.H.; Dalton, L.R. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels–Alder cross-linkable binary molecular glasses. Chem. Mater. 2020, 32, 1408–1421. [Google Scholar] [CrossRef]
- Khan, S.A.; Razvi, M.A.; Bakry, A.H.; Afzal, S.M.; Asiri, A.M.; El-Daly, S.A. Microwave assisted synthesis, spectroscopic studies and non linear optical properties of bis-chromophores. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 1100–1105. [Google Scholar] [CrossRef]
- Sun, W.-M.; Li, X.-H.; Wu, D.; Li, Y.; He, H.-M.; Li, Z.-R.; Chen, J.-H.; Li, C.-Y. A theoretical study on superalkali-doped nanocages: Unique inorganic electrides with high stability, deep-ultraviolet transparency, and a considerable nonlinear optical response. Dalton Trans. 2016, 45, 7500–7509. [Google Scholar] [CrossRef]
- Ullah, F.; Kosar, N.; Ayub, K.; Mahmood, T. Superalkalis as a source of diffuse excess electrons in newly designed inorganic electrides with remarkable nonlinear response and deep ultraviolet transparency: A DFT study. Appl. Surf. Sci. 2019, 483, 1118–1128. [Google Scholar] [CrossRef]
- Israr, H.; Rasool, N.; Rizwan, K.; Hashmi, M.A.; Mahmood, T.; Rashid, U.; Hussein, M.Z.; Akhtar, M.N. Synthesis and reactivities of triphenyl acetamide analogs for potential nonlinear optical material uses. Symmetry 2019, 11, 622. [Google Scholar] [CrossRef]
- Wu, C.L.; Su, S.P.; Lin, G.R. All-optical modulation based on silicon quantum dot doped SiOx: Si-QD waveguide. Laser Photonics Rev. 2014, 8, 766–776. [Google Scholar] [CrossRef]
- Lin, G.-R.; Su, S.-P.; Wu, C.-L.; Lin, Y.-H.; Huang, B.-J.; Wang, H.-Y.; Tsai, C.-T.; Wu, C.-I.; Chi, Y.-C. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s. Sci. Rep. 2015, 5, 9611. [Google Scholar] [CrossRef]
- Wu, C.-L.; Lin, Y.-H.; Su, S.-P.; Huang, B.-J.; Tsai, C.-T.; Wang, H.-Y.; Chi, Y.-C.; Wu, C.-I.; Lin, G.-R. Enhancing optical nonlinearity in a nonstoichiometric SiN waveguide for cross-wavelength all-optical data processing. ACS Photonics 2015, 2, 1141–1154. [Google Scholar] [CrossRef]
- Verbiest, T.; Houbrechts, S.; Kauranen, M.; Clays, K.; Persoons, A. Second-order nonlinear optical materials: Recent advances in chromophore design. J. Mater. Chem. 1997, 7, 2175–2189. [Google Scholar] [CrossRef]
- Vaz, W.F.; Custodio, J.M.; Silveira, R.G.; Castro, A.N.; Campos, C.E.; Anjos, M.M.; Oliveira, G.R.; Valverde, C.; Baseia, B.; Napolitano, H.B. Synthesis, characterization, and third-order nonlinear optical properties of a new neolignane analogue. RSC advances 2016, 6, 79215–79227. [Google Scholar] [CrossRef]
- Zhao, B.; Lu, W.-Q.; Zhou, Z.-H.; Wu, Y. The important role of the bromo group in improving the properties of organic nonlinear optical materials. J. Mater. Chem. 2000, 10, 1513–1517. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, G.; Zhang, A.; Xu, H.; Huang, H.; Peng, C.; Bo, S.; Liu, X.; Zhen, Z.; Qiu, L. Synthesis and properties of a new second-order NLO chromophore containing the benzo [b] furan moiety for electro-optical materials. RSC Adv. 2014, 4, 33312–33318. [Google Scholar] [CrossRef]
- Shehzadi, K.; Tariq, A.; Zubair, M.; Mahmood, T.; Kosar, N.; Karakaya, I.; Rasool, N.; Rizwan, K. Synthesis of pyridine and furan based arylated ketones through palladium catalyst with DFT study of their static and frequency dependent NLO response. Inorg. Chem. Commun. 2023, 151, 110566. [Google Scholar] [CrossRef]
- Muhammad, S.; Bibi, J.; Alqurashy, B.A.; Alarfaji, S.S.; Kalam, A.; Chaudhry, A.R.; Al-Sehemi, A.G. Molecular Tailoring by furan and thiophene Heterocycles to optimize nonlinear optical and Photovoltaic Efficiency. J. Photochem. Photobiol. A Chem. 2025, 468, 116496. [Google Scholar] [CrossRef]
- Chaudhry, A.R.; Haq, B.U.; Muhammad, S.; Laref, A.; Irfan, A.; Algarni, H. Structural, electronic and optical properties of furan based materials at bulk level for photovoltaic applications: A first-principles study. Comput. Theor. Chem. 2019, 1147, 20–28. [Google Scholar] [CrossRef]
- Sun, H. Unraveling the structure–property relationship of novel thiophene and furan-fused cyclopentadienyl chromophores for nonlinear optical applications. J. Comput. Chem. 2024, 45, 2612–2623. [Google Scholar] [CrossRef]
- Mujahid, A.; Rasool, N.; Qamar, M.U.; Zubair, M.; Ahmad, F.; Altaf, A.A.; Akhtar, A.; Shah, S.A.A.; Alqahtani, F.; Alsanea, S. Arylation of halogenated thiophene carboxylate via Suzuki–Miyaura reaction: Anti-bacterial study against clinically isolated extensively drug resistant Escherichia coli sequence type 405 and computational investigation. Arab. J. Chem. 2022, 15, 103662. [Google Scholar] [CrossRef]
- Imran, H.M.; Rasool, N.; Kanwal, I.; Hashmi, M.A.; Altaf, A.A.; Ahmed, G.; Malik, A.; Kausar, S.; Khan, S.U.-D.; Ahmad, A. Synthesis of halogenated [1,1′-biphenyl]-4-yl benzoate and [1,1′: 3′,1″-terphenyl]-4′-yl benzoate by palladium catalyzed cascade C–C coupling and structural analysis through computational approach. J. Mol. Struct. 2020, 1222, 128839. [Google Scholar] [CrossRef]
- Simonetti, M.; Cannas, D.M.; Larrosa, I. Biaryl synthesis via C–H bond activation: Strategies and methods. In Advances in Organometallic Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 67, pp. 299–399. [Google Scholar]
- Biajoli, A.F.; Schwalm, C.S.; Limberger, J.; Claudino, T.S.; Monteiro, A.L. Recent progress in the use of Pd-catalyzed CC cross-coupling reactions in the synthesis of pharmaceutical compounds. J. Braz. Chem. Soc. 2014, 25, 2186–2214. [Google Scholar]
- Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2483. [Google Scholar] [CrossRef]
- Ahmad, F.; Altaf, H.; Mubarik, A.; Rasool, N.; Parveen, B.; Imran, M.; Ahmad, G. Facile Synthesis of (S)-2-Aryl-N-(1-phenylethylisonicotinamides) Derivatives via SMC Reaction: Their Thermodynamic and Spectroscopic Features via DFT Approach. ChemistrySelect 2024, 9, e202403173. [Google Scholar] [CrossRef]
- Hafeez, J.; Sabir, A.; Rasool, N.; Hafeez, U.; Siddique, F.; Bilal, M.; Kanwal, A.; Ahmad, G.; Alqahtani, F.; Imran, I. Synthesis of N, N-Bis ([1,1′-Biphenyl]-4-ylmethyl)-4-morpholinoaniline derivatives via SMC reaction: Assessing their anti-seizure potential through electroencephalogram evaluation and molecular docking studies. Arab. J. Chem. 2024, 17, 105889. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView. 6.0., Version 16; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Frisc, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision C. 01; Gaussian Inc.: Wallingford, UK, 2010. [Google Scholar]
- Ahmad, G.; Rasool, N.; Mubarik, A.; Zahoor, A.F.; Hashmi, M.A.; Zubair, M.; Bilal, M.; Hussien, M.; Akhtar, M.S.; Haider, S. Facile Synthesis of 5-Aryl-N-(pyrazin-2-yl) thiophene-2-carboxamides via Suzuki Cross-Coupling Reactions, Their Electronic and Nonlinear Optical Properties through DFT Calculations. Molecules 2021, 26, 7309–7324. [Google Scholar] [CrossRef]
- Barone, G.; Duca, D.; Silvestri, A.; Gomez-Paloma, L.; Riccio, R.; Bifulco, G. Determination of the relative stereochemistry of flexible organic compounds by ab initio methods: Conformational analysis and Boltzmann-averaged GIAO 13C NMR chemical shifts. Chem.-Eur. J. 2002, 8, 3240–3245. [Google Scholar] [CrossRef] [PubMed]
- Ikram, H.M.; Rasool, N.; Hashmi, M.A.; Anjum, M.A.; Ali, K.G.; Zubair, M.; Ahmad, G.; Mahmood, T. Density functional theory-supported studies of structural and electronic properties of substituted-phenol derivatives synthesized by efficient O-or C-arylation via Chan--Lam or Suzuki cross-coupling reactions. Turk. J. Chem. 2019, 43, 1306–1321. [Google Scholar] [CrossRef]
- Mubarik, A.; Rasool, N.; Hashmi, M.A.; Mansha, A.; Zubair, M.; Shaik, M.R.; Sharaf, M.A.; Awwad, E.M.; Abdelgawad, A. Computational study of structural, molecular orbitals, optical and thermodynamic parameters of thiophene sulfonamide derivatives. Crystals 2021, 11, 211. [Google Scholar] [CrossRef]
- Zheng, B.; Huo, L. Recent advances of furan and its derivatives based semiconductor materials for organic photovoltaics. Small Methods 2021, 5, 2100493. [Google Scholar] [CrossRef] [PubMed]
- Migalska-Zalas, A.; El Korchi, K.; Chtouki, T. Enhanced nonlinear optical properties due to electronic delocalization in conjugated benzodifuran derivatives. Opt. Quantum Electron. 2018, 50, 389. [Google Scholar] [CrossRef]
- Qin, Y.; Mu, X.; Feng, X.; Xu, K.; Ma, J.; Cao, L.; Teng, B. Design, synthesis and characterization of two new nonlinear optical crystals based on chalcone containing furan ring: FTB and FTC. J. Mol. Struct. 2025, 1332, 141720. [Google Scholar] [CrossRef]
- Satheeshchandra, S.; Namratha, W.; Haleshappa, D.; Jayarama, A.; Shetty, N.; Pinto, R. Third order non linear optical properties of novel furan based organic crystal. Mater. Today: Proc. 2021, 35, 427–430. [Google Scholar] [CrossRef]
- Khan, M.U.; Hussain, S.; Asghar, M.A.; Munawar, K.S.; Khera, R.A.; Imran, M.; Ibrahim, M.M.; Hessien, M.M.; Mersal, G.A. Exploration of nonlinear optical properties for the first theoretical framework of non-fullerene DTS (FBTTh2) 2-based derivatives. ACS Omega 2022, 7, 18027–18040. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K. Second-order nonlinear polarizability of “Push-Pull” chromophores. A decade of progress in donor-π-acceptor materials. Chem. Rec. 2022, 22, e202200024. [Google Scholar] [CrossRef]
- Zaręba, J.K.; Nyk, M.; Samoć, M. Nonlinear optical properties of emerging nano-and microcrystalline materials. Adv. Opt. Mater. 2021, 9, 2100216. [Google Scholar] [CrossRef]
- Bullo, S.; Jawaria, R.; Faiz, I.; Shafiq, I.; Khalid, M.; Asghar, M.A.; Baby, R.; Orfali, R.; Perveen, S. Efficient synthesis, spectroscopic characterization, and nonlinear optical properties of novel salicylaldehyde-based thiosemicarbazones: Experimental and theoretical studies. ACS Omega 2023, 8, 13982–13992. [Google Scholar] [CrossRef]
- Palatnikov, M.; Kadetova, A.; Smirnov, M.; Sidorova, O.; Vorobev, D. Nonlinear optical properties of lithium niobate crystals doped with alkaline earth and rare earth elements. Opt. Mater. 2022, 131, 112631. [Google Scholar] [CrossRef]
- Raza Shah, A.; Rasool, N.; Bılal, M.; Mubarık, A.; Alı Hashmı, M.; Nadeem Akhtar, M.; Imran, M.; Ahmad, G.; Siddiqa, A.; Adnan Alı Shah, S. Efficient Synthesis of 4-Bromo-N-(1-phenylethyl) benzamide, Arylation by Pd (0) Catalyst, Characterization and DFT Study. ChemistrySelect 2022, 7, e202200861. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Pandey, A.K.; Jain, S.; Misra, N. FT-IR spectroscopy, intra-molecular C− H⋯ O interactions, HOMO, LUMO, MESP analysis and biological activity of two natural products, triclisine and rufescine: DFT and QTAIM approaches. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 682–689. [Google Scholar] [CrossRef]
- Bayoumy, A.M.; Ibrahim, M.; Omar, A. Mapping molecular electrostatic potential (MESP) for fulleropyrrolidine and its derivatives. Opt. Quantum Electron. 2020, 52, 346. [Google Scholar] [CrossRef]
- Kumar, K.; Vishwkarma, A.K.; Pratap, R.; Garai, S.; Pathak, A.; Sharma, R.; Bhattacharya, S. Synthesis, crystal structures, and theoretical studies on bio-pertinent disulfides derived from methyl thiosalicylate and furan-2-thiocarboxylic acid and their interaction with native human lysozymes. Chem. Pap. 2024, 78, 3721–3733. [Google Scholar] [CrossRef]
- Fatima, A.; Khanum, G.; Verma, I.; Butcher, R.J.; Siddiqui, N.; Srivastava, S.K.; Javed, S. Synthesis, characterization, crystal structure, Hirshfeld surface, electronic excitation, molecular docking, and DFT studies on 2-amino thiophene derivative. Polycycl. Aromat. Compd. 2023, 43, 1644–1675. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef]
- Chattaraj, P.; Poddar, A. Molecular reactivity in the ground and excited electronic states through density-dependent local and global reactivity parameters. J. Phys. Chem. A 1999, 103, 8691–8699. [Google Scholar] [CrossRef]
- Pearson, R.G. Chemical hardness and density functional theory. J. Chem. Sci. 2005, 117, 369–377. [Google Scholar] [CrossRef]
- Vektariene, A.; Vektaris, G.; Svoboda, J. A theoretical approach to the nucleophilic behavior of benzofused thieno [3, 2-b] furans using DFT and HF based reactivity descriptors. Ark. Online J. Org. Chem. 2009, vii, 311–329. [Google Scholar] [CrossRef]
- Guthrie, G., Jr.; Scott, D.; Hubbard, W.; Katz, C.; McCullough, J.; Gross, M.; Williamson, K.; Waddington, G. Thermodynamic properties of furan. J. Am. Chem. Soc. 1952, 74, 4662–4669. [Google Scholar] [CrossRef]
- Pérez, P.; Domingo, L.R.; Aizman, A.; Contreras, R. The electrophilicity index in organic chemistry. In Theoretical and Computational Chemistry; Elsevier: Amsterdam, The Netherlands, 2007; Volume 19, pp. 139–201. [Google Scholar]
- Parr, R.G.; Szentpály, L.v.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Hansen-Felby, M.; Henriksen, M.L.; Pedersen, S.U.; Daasbjerg, K. Postfunctionalization of self-immolative poly (dithiothreitol) using Steglich esterification. Macromolecules 2022, 55, 5788–5794. [Google Scholar] [CrossRef]
- Afzal, U.; Mahmood, A.; Zubair, M.; Rasool, N.; Kanwal, A.; Sohail, M.; Ahmad, G. Synthesis, hydrolysis, and COX-2/15-LOX inhibitory evaluation of 4-Acetamidophenyl 4-Bromobenzoates. Med. Chem. Res. 2025, 34, 982–995. [Google Scholar] [CrossRef]
- Johnson, B.A. Using NMRView to Visualize and Analyze the NMR Spectra of Macromolecules. In Protein NMR Techniques; Humana Press: Totowa, NJ, USA, 2004; pp. 313–352. [Google Scholar]
Entry | Solvent | Catalyst | Temp. | Time | % Age Yield |
---|---|---|---|---|---|
1. | DCM | DCC/DMAP | 0 °C | 2 h | 21 |
2. | THF | DCC/DMAP | 0 °C | 2 h | 41 |
3. | CH3CN | DCC/DMAP | 0 °C | 2 h | 88 |
Compounds | EHOMO | ELUMO | ELUMO-EHOMO | Hyperpolarizability β |
---|---|---|---|---|
5a | −6.29 | −1.74 | 4.55 | 3897.42 |
5b | −6.42 | −1.90 | 4.52 | 4396.08 |
5c | −6.54 | −2.02 | 4.52 | 4080.83 |
5d | −6.33 | −1.73 | 4.60 | 4242.53 |
5e | −6.52 | −1.92 | 4.60 | 3859.80 |
Compounds | I (eV) | A (eV) | η (eV) | μ (eV) | ω (eV) | σ (eV−1) |
---|---|---|---|---|---|---|
5a | 6.29 | 1.74 | 2.27 | –4.02 | 3.54 | 0.44 |
5b | 6.42 | 1.90 | 2.25 | –4.16 | 3.84 | 0.44 |
5c | 6.54 | 2.02 | 2.26 | –4.28 | 4.05 | 0.44 |
5d | 6.33 | 1.73 | 2.30 | –4.03 | 3.54 | 0.43 |
5e | 6.52 | 1.92 | 2.30 | –4.22 | 3.87 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakhar U. Zaman, M.; Mubarik, A.; Kanwal, A.; Rasool, N.; Ahmad, M.; Sohail, M.; Malik, A.; Al-Hussain, S.A.; Zaki, M.E.A. Facile Synthesis of 4-(Methoxycarbonyl)phenyl 5-Arylfuran-2-Carboxylates via Readily Available Pd Catalyst–Their Thermodynamic, Spectroscopic Features and Nonlinear Optical Behavior. Catalysts 2025, 15, 713. https://doi.org/10.3390/catal15080713
Fakhar U. Zaman M, Mubarik A, Kanwal A, Rasool N, Ahmad M, Sohail M, Malik A, Al-Hussain SA, Zaki MEA. Facile Synthesis of 4-(Methoxycarbonyl)phenyl 5-Arylfuran-2-Carboxylates via Readily Available Pd Catalyst–Their Thermodynamic, Spectroscopic Features and Nonlinear Optical Behavior. Catalysts. 2025; 15(8):713. https://doi.org/10.3390/catal15080713
Chicago/Turabian StyleFakhar U. Zaman, Muhammad, Adeel Mubarik, Aqsa Kanwal, Nasir Rasool, Matloob Ahmad, Maria Sohail, Ayesha Malik, Sami A. Al-Hussain, and Magdi E. A. Zaki. 2025. "Facile Synthesis of 4-(Methoxycarbonyl)phenyl 5-Arylfuran-2-Carboxylates via Readily Available Pd Catalyst–Their Thermodynamic, Spectroscopic Features and Nonlinear Optical Behavior" Catalysts 15, no. 8: 713. https://doi.org/10.3390/catal15080713
APA StyleFakhar U. Zaman, M., Mubarik, A., Kanwal, A., Rasool, N., Ahmad, M., Sohail, M., Malik, A., Al-Hussain, S. A., & Zaki, M. E. A. (2025). Facile Synthesis of 4-(Methoxycarbonyl)phenyl 5-Arylfuran-2-Carboxylates via Readily Available Pd Catalyst–Their Thermodynamic, Spectroscopic Features and Nonlinear Optical Behavior. Catalysts, 15(8), 713. https://doi.org/10.3390/catal15080713