Exploring Synthesis Methods of CdS/TiO2 Photocatalysts for Enhanced Hydrogen Production Under Visible Light
Abstract
1. Introduction
2. Results
2.1. X-Ray Diffraction (XRD)
2.2. Chemical Analysis
2.3. Diffuse Reflectance Spectroscopy (DRS)
2.4. Textural Properties
2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.6. Photoluminescence (PL)
2.7. XPS Analysis (X-Ray Photoelectron Spectroscopy)
2.8. Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS), and Transmission Electron Microscopy (TEM)
2.9. (Photo)Electrochemical Characterization
2.10. Photocatalytic Evaluation
2.11. Photocatalyst Stability
2.12. Reaction Mechanism
3. Materials and Methods
3.1. Synthesis of TiO2
3.2. Synthesis of CdS
3.3. Synthesis of CdS/TiO2 Composites by Impregnation of Cd2+
3.4. Synthesis of the CdS/TiO2 Composite by Photodeposition
3.5. Characterization of the Materials
3.6. Photocatalytic Hydrogen Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, K.; Wu, P.; Zhu, J.; Liu, C.; Dong, X.; Wu, J.; Meng, G.; Xu, K.; Hou, J.; Liu, Z.; et al. Synthesis of hollow core-shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chem. Eng. J. 2019, 360, 221–230. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Yang, Y.; Li, J.; Liu, W.; Shen, Y.; Tian, X. Photocatalytic hydrogen evolution using ternary-metal-sulfide/TiO2 heterojunction photocatalysts. ChemCatChem 2022, 14, e202101439. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, Q.; Li, J.; Rao, P.; Li, R.; Du, Y.; Jia, C.; Huang, W.; Luo, J.; Deng, P.; et al. Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting. J. Colloid Interface Sci. 2022, 607, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Hafenstine, G.R.; Ma, K.; Harris, A.W.; Yehezkeli, O.; Park, E.; Domaille, D.W.; Cha, J.N.; Goodwin, A.P. Multicatalytic, light-driven upgrading of butanol to 2-ethylhexenal and hydrogen under mild aqueous conditions. ACS Catal. 2017, 7, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yin, L.-C.; Gong, Y.; Niu, P.; Wang, J.-Q.; Gu, L.; Chen, X.; Liu, G.; Wang, L.; Cheng, H.-M. An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Adv. Mater. 2018, 30, 1704479. [Google Scholar] [CrossRef]
- Qin, Y.; Li, H.; Lu, J.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 384, 123275. [Google Scholar] [CrossRef]
- Hafeez, H.Y.; Lakhera, S.K.; Karthik, P.; Anpo, M.; Neppolian, B. Facile construction of ternary CuFe2O4-TiO2 nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen production. Appl. Surf. Sci. 2018, 449, 772–779. [Google Scholar] [CrossRef]
- Ji, L.; Spanu, D.; Denisov, N.; Recchia, S.; Schmuki, P.; Altomare, M. A dewetted-dealloyed nanoporous Pt co-catalyst formed on TiO2 nanotube arrays leads to strongly enhanced photocatalytic H2 production. Chem. Asian J. 2020, 15, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ke, Y.; Yu, L.; Wang, Y.; Homewood, K.P.; Chen, X.; Gao, Y. Tandem CdS/TiO2(B) nanosheet photocatalysts for Enhanced H2 evolution. Appl. Surf. Sci. 2020, 515, 145970. [Google Scholar] [CrossRef]
- Yu, J.; Low, J.; Xioa, W.; Zhou, P.e.n.g.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef] [PubMed]
- Solakidou, M.; Giannakas, A.; Georgiou, Y.; Boukos, N.; Louloudi, M.; Deligiannakis, Y. Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N,F-TiO2: Interplay between CdS photo corrosion and TiO2-dopping. Appl. Catal. B Environ. 2019, 254, 194–205. [Google Scholar] [CrossRef]
- Zhao, J.; Li, W.; Liu, H.; Dhi, H.; Xiao, C. Yolk-Shell CdS@void@TiO2 composite particles with photocorrosion resistance for enhanced dye removal and hydrogen evolution. Adv. Powder Technol. Int. J. Soc. Powder Technol. Jpn. 2019, 30, 1965–1975. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, H.; Kang, W.; Qiu, G.; Liang, R.; Deng, L.; Yuan, H. Enhancing hydrogen evolution by photoelectrocatalysis of water splitting over a CdS flowers-loaded TiO2 nanotube array film on the Ti foil substrate. Ceram. Int. 2020, 46, 17606–17613. [Google Scholar] [CrossRef]
- Bashiri, R.; Samsudin, M.F.R.; Mohamed, N.M.; Suhaimi, N.A.; Ling, L.Y.; Sufian, S.; Kait, C.F. Influence of growth time on photoelectrical characteristics and photocatalytic hydrogen production of decorated Fe2O3 on TiO2 nanorod in photoelectrochemical cell. Appl. Surf. Sci. 2020, 550, 145482. [Google Scholar] [CrossRef]
- Hu, J.; Wang, L.; Zhang, P.; Liang, C.; Shao, G. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production. J. Power Source 2016, 328, 28–36. [Google Scholar] [CrossRef]
- Wang, P.; Sheng, Y.; Wang, F.; Yu, H. Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2-evolution performance: A case study of CdS-Au photocatalyst. Appl. Catal. B 2018, 220, 561–569. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.; Zhao, S.; Li, C.; Wang, R.; Cao, D.; Liu, G. Construction of Bi-assisted modified CdS/TiO2 nanotube arrays with ternary S-scheme heterojunction for photocatalytic wastewater treatment and hydrogen production. Fuel 2022, 322, 124163. [Google Scholar] [CrossRef]
- Wang, X.-L.; Zheng, R.-R.; Yu, H.; Dong, X.-T. Preparation and photocatalytic hydrogen production properties of mesoporous CdS/TiO2 composites. Nano 2020, 15, 2050019. [Google Scholar] [CrossRef]
- Ge, H.; Xu, F.; Cheng, B.; Yu, J.; Ho, W. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 2019, 11, 6301–6309. [Google Scholar] [CrossRef]
- Meng, A.; Zhu, B.; Zhong, B.; Zhang, L.; Cheng, B. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Surf. Sci. 2017, 422, 518–527. [Google Scholar] [CrossRef]
- Yang, X.; Cao, C.; Erickson, L.; Hohn, K.; Maghirang, R.; Klabunde, K. Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. J. Catal. 2008, 260, 128–133. [Google Scholar] [CrossRef]
- López, R.; Gómez, R. Photocatalytic degradation of 4-nitrophenol on well characterized sol–gel molybdenum doped titania semiconductors. Top. Catal. 2011, 54, 504–511. [Google Scholar] [CrossRef]
- Hernandez-Gordillo, A.; Tzompantzi, F.; Oros-Ruiz, S.; Torres-Martinez, L.M.; Gomez, R. Enhanced blue-light photocatalytic H2 production using CdS nanofiber. Catal. Commun. 2014, 45, 139–143. [Google Scholar] [CrossRef]
- López, R.; Gómez, R.; Llanos, M.E. Photophysical and photocatalytic properties of nanosized copper-doped titania sol–gel catalysts. Catal. Today 2009, 148, 103–108. [Google Scholar] [CrossRef]
- Rosu, M.C.; Suciu, R.C.; Lazar, M.D.; Bratu, I. Phtalocyanine and meso-tetraphenylporphine effects on TiO2/CdS nanocomposites photoactivity. J. Optoelectron. Adv. Mater. 2011, 13, 1405. [Google Scholar]
- Matveev, S.; Stachel, T. FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration. Geochim. Cosmochim. Acta 2007, 71, 5528–5543. [Google Scholar] [CrossRef]
- Kuvarega, A.T.; Krause, R.W.; Mamba, B.B. Comparison between base metals and platinum group metals in nitrogen, M codoped TiO2 (M = Fe, Cu, Pd, Os) for photocatalytic removal of an organic dye in water. J. Nanomater. 2014, 2024, 199. [Google Scholar] [CrossRef]
- Pei, F.; Liu, Y.; Xu, S.; Lü, J.; Wang, C.; Cao, S. Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution. Int. J. Hydrogen Energy 2013, 38, 2670–2677. [Google Scholar] [CrossRef]
- Islam, M.A.; Haque, F.; Rahman, K.S.; Dhar, N.; Hossain, M.S.; Sulaiman, Y.; Amin, N. Effect of oxidation on structural, optical and electrical properties of CdS thin films grown by sputtering. Optik 2015, 126, 3177–3180. [Google Scholar] [CrossRef]
- Foo, G.S.; Lee, J.J.; Chen, C.H.; Hayes, S.E.; Sievers, C.; Jones, C.W. Elucidation of surface species through in situ FTIR spectroscopy of carbon dioxide adsorption on amine-grafted SBA-15. ChemSusChem 2017, 10, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Gordillo, A.; Oros-Ruiz, S.; Gómez, R. Preparation of efficient cadmium sulfide nanofibers for hydrogen production using ethylenediamine (NH2CH2CH2NH2) as template. J. Colloid Interface Sci. 2015, 451, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Stefan, M.; Pana, O.; Leostean, C.; Bele, C.; Silipas, D.; Senila, M.; Gautron, E. Synthesis and characterization of Fe3O4–TiO2 core-shell nanoparticles. J. Appl. Phys. 2014, 116, 114312. [Google Scholar] [CrossRef]
- Thakurdesai, M.; Kanjilal, D.; Bhattacharyya, V. Formation of nanohillocks by impact of swift heavy ions on thin films of TiO2. Appl. Surf. Sci. 2008, 254, 4695–4700. [Google Scholar] [CrossRef]
- Wang, C.; Shi, H.; Zhang, P.; Li, Y. Synthesis and characterization of kaolinite/TiO2 nano-photocatalysts. Appl. Clay Sci. 2011, 53, 646–649. [Google Scholar] [CrossRef]
- Leo, I.M.; Soto, E.; Vaquero, F.; Mota, N.; Navarro, R.M.; Fierro, J.L.G. Influence of the reduction of graphene oxide (rGO) on the structure and photoactivity of CdS-rGO hybrid systems. Int. J. Hydrogen Energy 2017, 42, 13691–13703. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. Synthesis and Characterization of CdS Nanocrystals and Malehic anhydride octene-1 copolymer nanocomposite materials by the chemical in situ technique. Compos. Part B 2015, 68, 431–435. [Google Scholar] [CrossRef]
- Kumar Challa, K.; Goswami, S.K.; Oh, E.; Kim, E.-T. Effect of CdS film thickness on the photoexcited carrier lifetime of TiO2/CdS core-shell nanowires. Appl. Phys. Lett. 2011, 99, 153111. [Google Scholar] [CrossRef]
- Park, H.; Kim, Y.K.; Choi, W. Reversing CdS preparation order and its effects on photocatalytic hydrogen production of CdS/Pt-TiO2 hybrids under visible light. J. Phys. Chem. C Nanomater. Interfaces 2011, 115, 6141–6148. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Rahimi, K. Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation. J. Mater. Chem. 2012, 22, 23260. [Google Scholar] [CrossRef]
- Knorr, F.J.; Zhang, D.; McHale, J.L. Influence of TiCl4 Treatment on Surface Defect Photoluminescence in Pure and MixedPhase Nanocrystalline TiO2. Langmuir 2007, 23, 8686–8690. [Google Scholar] [CrossRef] [PubMed]
- Ziaeifar, F.; Alizadeh, A.; Shariatinia, Z. Dye sensitized solar cells fabricated based on nanocomposite photoanodes of TiO2 and AlMo0.5O3 perovskite nanoparticles. Sol. Energy 2021, 218, 435–444. [Google Scholar] [CrossRef]
- Rao, V.N.; Sairam, P.K.; Kim, M.D.; Rezakazemi, M.; Aminabhavi, T.M.; Ahn, C.W.; Yang, J.M. CdS/TiO2 nano hybrid heterostructured materials for superior hydrogen production and gas sensor applications. J. Environ. Manag. 2023, 340, 117895. [Google Scholar] [CrossRef]
- Ulyanova, E.S.; Zamyatin, D.A.; Kolosov, V.Y.; Shalaeva, E.V. Visible light photoluminescence in TiO2/CdS nanopowders synthesized by sol-gel route: Effect of gel aging time. Nanosyst. Phys. Chem. Math. 2020, 11, 480–487. [Google Scholar] [CrossRef]
- Xu, X.; Li, D. Ligand-Decomposition assistant formation of CdS/TiO2 hybrid nanostructure with enhanced photocatalytic activity. J. Alloys Compd. 2022, 914, 165393. [Google Scholar] [CrossRef]
- Sabir, M.; Rafiq, K.; Abid, M.Z.; Quyyum, U.; Shah, S.S.A.; Faizan, M.; Rauf, A.; Iqbal, S.; Hussain, E. Growth of tunable Au-BaO@ TiO2/CdS heterostructures: Acceleration of hydrogen evolution from water splitting. Fuel 2023, 353, 129196. [Google Scholar] [CrossRef]
- Rao, V.N.; Kwon, H.; Lee, Y.; Ravi, P.; Ahn, C.W.; Kim, K.; Yang, J.M. Synergistic integration of MXene nanosheets with CdS@ TiO2 core@ shell S-scheme photocatalyst for augmented hydrogen generation. Chem. Eng. J. 2023, 471, 144490. [Google Scholar] [CrossRef]
- Qin, N.; Xiong, J.; Liang, R.; Liu, Y.; Zhang, S.; Li, Y.; Li, Z.; Wu, L. Highly efficient photocatalytic H2 evolution over MoS2/CdS-TiO2 nanofibers prepared by an electrospinning mediated photodeposition method. Appl. Catal. B Environ. 2017, 202, 374–380. [Google Scholar] [CrossRef]
- Lian, Z.; Xu, P.; Wang, W.; Zhang, D.; Xiao, S.; Li, X.; Li, G. C60-decorated CdS/TiO2 mesoporous architectures with enhanced photostability and photocatalytic activity for H2 evolution. ACS Appl. Mater. Interfaces 2015, 7, 4533–4540. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.H. Photocatalytic remediation of organic pollutants in contaminated water using trimetallic zeolitic imidazole framework: From methylene blue to wastewater. Chemosphere 2025, 377, 144362. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, D.; Chen, C. Urchin-like TiO2/CdS nanoparticles forming an S-scheme heterojunction for photocatalytic hydrogen production and CO2 reduction. ACS Appl. Nano Mater. 2023, 6, 21897–21908. [Google Scholar] [CrossRef]
- Du, J.; Wang, H.; Yang, M.; Li, K.; Zhao, L.; Zhao, G.; Li, S.; Gu, X.; Zhou, Y.; Wang, L.; et al. Pyramid-like CdS nanoparticles grown on porous TiO2 monolith: An advanced photocatalyst for H2 production. Electrochim. Acta 2017, 250, 99–107. [Google Scholar] [CrossRef]
- Gao, B.; Yuan, X.; Lu, P.; Lin, B.; Chen, Y. Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets. J. Phys. Chem. Solids 2015, 87, 171–176. [Google Scholar] [CrossRef]
- Tian, F.; Hou, D.; Hu, F.; Xie, K.; Qiao, X.; Li, D. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2017, 391, 295–302. [Google Scholar] [CrossRef]
- Ye, L.; Chu, K.H.; Wang, B.; Wu, D.; Xie, H.; Huang, G.; Yip, H.Y.; Wong, P.K. Noble-metal loading reverses temperature dependent photocatalytic hydrogen generation in methanol–water solutions. Chem. Commun. 2016, 52, 11657–11660. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Detlef, W. Bahnemann. Undesired role of sacrificial reagents in photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479–3483. [Google Scholar] [CrossRef]
- Carrera-Crespo, J.E.; Fuentes-Camargo, I.; Palma-Goyes, R.E.; García-Pérez, U.M.; Vazquez-Arenas, J.; Chairez, I.; Poznyak, T. Unrevealing the effect of transparent fluorine-doped tin oxide (FTO) substrate and irradiance configuration to unmask the activity of FTO-BiVO4 heterojunction. Mater. Sci. Semicond. Process. 2021, 128, 105717. [Google Scholar] [CrossRef]
Sample | Lattice Parameters | Crystallite Size (Å) (001) | |
---|---|---|---|
CdS (Å) | TiO2 (Å) | ||
TiO2 | - | a = b = 3.78, c = 9.50 | 170 |
CdS | a = b = 4.10, c = 6.63 | - | 1352 |
TiC10 | a = b = 4.10, c = 6.66 | a = b = 3.78, c = 9.48 | 154 |
TiC20 | a = b = 4.16, c = 6.67 | a = b = 3.78, c = 9.49 | 148 |
TiC20FD | a = b = 4.11, c = 6.67 | a = b = 3.78, c = 9.47 | 154 |
TiC30 | a = b = 4.11, c = 6.68 | a = b = 3.78, c = 9.49 | 125 |
TiC20 after Cycle 4 | a = b = 4.15, c = 6.65 | a = b = 3.78, c = 9.48 | 150 |
Sample | Cd (wt.%) | S (wt.%) | TiO2 (wt.%) | Eg (eV) | SBET (m2/g) |
---|---|---|---|---|---|
TiO2 | - | - | 100.0 | 3.32 | 51 |
TiC10 | 8.4 | 2.4 | 89.2 | 2.53 | 72 |
TiC20 | 17.9 | 4.9 | 77.2 | 2.50 | 83 |
TiC20FD | 18.3 | 4.0 | 77.3 | 2.53 | 87 |
TiC30 | 26.5 | 7.1 | 66.4 | 2.49 | 88 |
CdS | 21.5 | 78.5 | - | 2.52 | 152 |
Sample | Content | Elements | |||
---|---|---|---|---|---|
Cd | S | Ti | O | ||
TiC20 | Wt.% | 17.47 | 3.88 | 46.78 | 31.87 |
Material | Method | Sacrificial Agents | Light Source | Experimental Conditions | Hydrogen Production | Reference |
---|---|---|---|---|---|---|
1-CdS/TiO2 | Hydrothermal | 0.35 M Na2S/ 0.25 M Na2SO4 | 300 W Xe | 10 mg/10 mL | 1.07 mmol/gcath | [50] |
2-CdS/TiO2 | SILAR | Methanol | 350 W Xe | 50 mg/80 mL | 1.02 mmol/gcath | [20] |
3-CdS/TiO2 | Hydrothermal | 0.1 M Na2S/ 0.1 M Na2SO4 | 300 W Xe | 10 mg/50 mL | 1.494 mmol/gcath | [9] |
4-CdS/TiO2 | Two-step method | 0.35 M Na2S/ 0.25 M Na2SO4 | 300 W Xe | 50 mg/50 mL | 1.048 mmol/gcath | [51] |
5-CdS/TiO2 | Hydrothermal | Lactic acid | 300 W Xe | 100 mg/100 mL | 0.765 mmol/gcath | [52] |
6-CdS/TiO2 | SILAR | 1.0 M Na2S/ 1.0 M Na2SO4 | 300 W Xe | 80 mg/80 mL | 0.678 mmol/gcath | [53] |
7-TiC20FD | Photodeposition | Methanol | 4 W | 50 mg/200 mL | 0.383 mmol/gcath | This work |
8-TiC20 | Impregnation | Methanol | 4 W | 50 mg/200 mL | 0.570 mmol/gcath | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Ramos, J.; Oros-Ruíz, S.; Romero-Villegas, A.G.; Carrera-Crespo, J.E.; Pérez-Hernández, R.; S. Valente, J.; Tzompantzi, F. Exploring Synthesis Methods of CdS/TiO2 Photocatalysts for Enhanced Hydrogen Production Under Visible Light. Catalysts 2025, 15, 699. https://doi.org/10.3390/catal15080699
Herrera-Ramos J, Oros-Ruíz S, Romero-Villegas AG, Carrera-Crespo JE, Pérez-Hernández R, S. Valente J, Tzompantzi F. Exploring Synthesis Methods of CdS/TiO2 Photocatalysts for Enhanced Hydrogen Production Under Visible Light. Catalysts. 2025; 15(8):699. https://doi.org/10.3390/catal15080699
Chicago/Turabian StyleHerrera-Ramos, Jesús, Socorro Oros-Ruíz, Angela G. Romero-Villegas, J. Edgar Carrera-Crespo, Raúl Pérez-Hernández, Jaime S. Valente, and Francisco Tzompantzi. 2025. "Exploring Synthesis Methods of CdS/TiO2 Photocatalysts for Enhanced Hydrogen Production Under Visible Light" Catalysts 15, no. 8: 699. https://doi.org/10.3390/catal15080699
APA StyleHerrera-Ramos, J., Oros-Ruíz, S., Romero-Villegas, A. G., Carrera-Crespo, J. E., Pérez-Hernández, R., S. Valente, J., & Tzompantzi, F. (2025). Exploring Synthesis Methods of CdS/TiO2 Photocatalysts for Enhanced Hydrogen Production Under Visible Light. Catalysts, 15(8), 699. https://doi.org/10.3390/catal15080699