Purification and Characterization of a Protease Using Aspergillus oryzae Under Submerged Fermentation Using Dairy By-Products as a Substrate
Abstract
1. Introduction
2. Results
2.1. Production and Purification of Proteases Using Whey Concentrate
2.2. Evaluation of Enzyme Functional Properties
2.2.1. Effect of pH on Enzymatic Activity
2.2.2. Effect of Temperature on Enzymatic Activity and Stability
2.2.3. Effect of Inhibitors, Ions, and Surfactants on Enzymatic Activity
3. Discussion
3.1. Assessment of Whey-Based Protease Production and Purification
3.2. Functional Characterization of Enzymatic Properties
3.2.1. pH-Dependent Activity Profile of the Enzyme
3.2.2. Temperature-Dependent Catalytic Performance and Stability
3.2.3. Chemical Modulators of Enzyme Catalysis: Inhibitors, Ions, and Surfactants
4. Materials and Methods
4.1. Microorganism and Fermentation Medium
4.2. Submerged Fermentation
4.3. Protein Assay and Proteolytic Activity
4.4. Purification
4.4.1. Precipitation
4.4.2. High-Resolution Chromatography Purification
4.5. Polyacrylamide Gel Electrophoresis (SDS-PAGE)
4.6. Enzymatic Characterization
4.6.1. Effect of pH and Temperature on Enzymatic Activity and Stability
4.6.2. Effect of Ions, Inhibitors, and Surfactants on Proteolytic Activity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz-Villafán, B.; Rodríguez-Sanoja, R.; Sánchez, S. Useful microbial enzymes—An introduction. In Biotechnology of Microbial Enzymes; Brahmachari, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Sharma, V.; Tsai, M.L.; Nargotra, P.; Chen, C.W.; Kuo, C.H.; Sun, P.P.; Dong, C.D. Agro-industrial food waste as a low-cost substrate for sustainable production of industrial enzymes: A critical review. Catalysts 2022, 12, 1373. [Google Scholar] [CrossRef]
- Devos, R.J.B.; Bender, L.E.; Lopes, S.T.; Cavanhi, V.A.F.; Colvero, G.L.; Rempel, A.; Harakava, R.; Alves, S.L.; Colla, L.M. Multienzyme production by Bacillus velezensis strains isolated from fruit residues in submerged fermentation using triticale and sugarcane bagasse in the cultivation media. Process Biochem. 2024, 141, 90–101. [Google Scholar] [CrossRef]
- Li, H.; Huo, Y.; He, X.; Yao, L.; Zhang, H.; Cui, Y.; Xiao, H.; Xie, W.; Zhang, D.; Wang, Y.; et al. A male germ-cell-specific ribosome controls male fertility. Nature 2022, 612, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Londoño-Hernández, L.; de García-Gómez M, J.; Huerta-Ochoa, S.; Polanía-Rivera, A.M.; Aguilar, C.N.; Prado-Barragán, L.A. Effect of glucose concentration on the production of proteolytic extract by different strains of Aspergillus under solid-state fermentation. Fermentation 2024, 10, 97. [Google Scholar] [CrossRef]
- Singh, B.; Garg, N.; Mathur, P.; Soni, S.K.; Vaish, S.; Kumar, S. Microbial production of multienzyme preparation from mosambi peel using Trichoderma asperellum. Arch. Microbiol. 2022, 204, 313. [Google Scholar] [CrossRef]
- Rojas, L.F.; Zapata, P.; Ruiz-Tirado, L. Agro-industrial waste enzymes: Perspectives in circular economy. Curr. Opin. Green Sustain. Chem. 2022, 34, 100585. [Google Scholar] [CrossRef]
- El-Shora, H.M.; Metwally, M.A. Production, purification and characterisation of proteases from whey by some fungi. Ann. Microbiol. 2008, 58, 495–502. [Google Scholar] [CrossRef]
- Besediuk, V.; Yatskov, M.; Korchyk, N.; Kucherova, A.; Maletskyi, Z. Whey—From waste to a valuable resource. J. Agric. Food Res. 2024, 18, 101280. [Google Scholar] [CrossRef]
- Zandona, E.; Blažić, M.; Jambrak, A.R. Whey utilisation: Sustainable uses and environmental approach. Food Technol. Biotechnol. 2021, 59, 147–161. [Google Scholar] [CrossRef]
- Suberu, Y.; Akande, I.; Samuel, T.; Lawal, A.; Olaniran, A. Optimization of protease production in indigenous Bacillus species isolated from soil samples in Lagos, Nigeria using response surface methodology. Biocatal. Agric. Biotechnol. 2019, 18, 101011. [Google Scholar] [CrossRef]
- Ramos, D.G.; de Lima, J.M.S.; Filho, J.P.M.B.; de Souza-Motta, C.M.; Marques, D.d.A.V.; da Silva, M.V.; Correia, M.T.d.S.; Costa, R.M.P.B.; Converti, A.; de Almeida, S.M.V.; et al. Licuri (Syagrus coronata) oil cake as a substrate for collagenolytic protease production by submerged fermentation using a novel strain of Penicillium citrinum isolated from the Brazilian Caatinga. Waste Biomass Valorization 2024, 16, 1261–1276. [Google Scholar] [CrossRef]
- Kumura, H.; Ishido, T.; Shimazaki, K. Production and partial purification of proteases from Aspergillus oryzae grown in a medium based on whey protein as an exclusive nitrogen source. J. Dairy Sci. 2011, 94, 657–667. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Abd El-Salam, B.A.; Yaser, M.M.; Taha, S.S. Optimization and characterization of bacterial proteinase enzyme using whey as a fermentation medium. J. Adv. Pharm. Educ. Res. 2018, 8, 63–76. [Google Scholar]
- El-Gayar, K.E.; Essa, A.M.; Abada, E.A. Whey fermentation for protease production using Bacillus thuringiensis isolated from mangrove rhizosphere soil in Jazan, Saudi Arabia. Pol. J. Environ. Stud. 2020, 29, 2167–2176. [Google Scholar] [CrossRef] [PubMed]
- Taipa, M.Â.; Fernandes, P.; de Carvalho, C.C.C.R. Production and purification of therapeutic enzymes. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1148, pp. 1–24. [Google Scholar] [CrossRef]
- dos Santos, A.F.A.; de Andrade, V.D.; Cardoso, B.A.; da Silva, O.S.; de Oliveira, R.L.; Porto, A.L.F.; Porto, T.S.; Porto, C.S. Bioprospecção de enzimas produzidas por Aspergillus tamarii URM 4634, isolado do solo da Caatinga, por fermentação em estado sólido. Braz. J. Dev. 2020, 6, 25663–25676. [Google Scholar] [CrossRef]
- Silva, O.S.; de Almeida, E.M.; de Melo AH, F.; Porto, T.S. Purification and characterization of a novel extracellular serine-protease with collagenolytic activity from Aspergillus tamarii URM4634. Int. J. Biol. Macromol. 2018, 117, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- de Siqueira, A.C.R.; da Rosa, N.G.; Motta, C.M.S.; Cabral, H. Peptidase with keratinolytic activity secreted by Aspergillus terreus during solid-state fermentation. Braz. Arch. Biol. Technol. 2014, 57, 514–522. [Google Scholar] [CrossRef]
- El-Khonezy, M.; Elgammal, E.; Ahmed, E.; Abd-Elaziz, A. Detergent stable thiol-dependent alkaline protease produced from the endophytic fungus Aspergillus ochraceus BT21: Purification and kinetics. Biocatal. Agric. Biotechnol. 2021, 35, 102048. [Google Scholar] [CrossRef]
- Farooq, K.; Anwar, Z.; Khalid, W.; Hasan, S.; Afzal, F.; Zafar, M.; Ali, U.; Alghamdi, O.; AL-Farga, A.; Al-Maaqar, S.M. Optimization and detergent compatibility of protease produced from Aspergillus oryzae by utilizing agro wastes. ACS Omega 2024, 9, 17446–17457. [Google Scholar] [CrossRef]
- Mamo, J.; Kangwa, M.; Fernandez-Lahore, H.M.; Assefa, F. Optimization of media composition and growth conditions for production of milk-clotting protease (MCP) from Aspergillus oryzae DRDFS13 under solid-state fermentation. Braz. J. Microbiol. 2020, 51, 571–584. [Google Scholar] [CrossRef]
- Daniel, R.M.; Danson, M.J. A new understanding of how temperature affects the catalytic activity of enzymes. Trends Biochem. Sci. 2010, 35, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Copeland, R.A. Experimental measures of steady-state enzyme activity In ENZYMES: A Practical Introduction to Structure, Mechanism, and Data Analysis; Copeland, R.A., Ed.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Cornish-Bowden, A. Temperature effects on enzyme activity. In Fundamentals of Enzyme Kinetics; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Vinuthna, M.; Raju, K.J. Studies on the production of protease by Aspergillus oryzae NCIM 637 under solid-state fermentation using mixed substrates of prawn’s shell and fish meal powder. Asian J. Biotechnol. Bioresour. Technol. 2022, 8, 7–14. [Google Scholar] [CrossRef]
- Kamara, J.M.; Yilwa, V.M.; Brian, O.G.; Abdulsalami, M.S.; Ume, A.O. Extraction and activities of crude proteases from solid state fermentation of Aspergillus niger grown on various agro waste. BIMA J. Sci. Technol. 2022, 6, 56–64. [Google Scholar] [CrossRef]
- Mamo, J.; Kangwa, M.; Suarez Orellana, J.F.; Yelemane, V.; Fernandez-Lahore, H.M.; Assefa, F. Purification and characterization of aspartic protease produced from Aspergillus oryzae DRDFS13 MN726447 under solid-state fermentation. Catal. Lett. 2022, 152, 2033–2046. [Google Scholar] [CrossRef]
- Gomes, J.E.G.; Rosa, I.Z.; Nascimento, T.C.E.d.S.; de Souza-Motta, C.M.; Gomes, E.; Boscolo, M.; Moreira, K.A.; Pintado, M.M.E.; da Silva, R. Biochemical and thermodynamic characteristics of a new serine protease from Mucor subtilissimus URM 4133. Biotechnol. Rep. 2020, 28, e00552. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. A critical review on serine protease: Key immune manipulator and pathology mediator. Allergol. Immunopathol. 2017, 45, 579–591. [Google Scholar] [CrossRef]
- Guan, G.P.; Zhang, G.Q.; Wu, Y.Y.; Wang, H.X.; Ng, T.B. Purification and characterization of a novel serine protease from the mushroom Pholiota nameko. J. Biosci. Bioeng. 2011, 111, 641–645. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Gan, L.; Jiang, G.; Tian, Y.; Shi, B. Exoproduction and biochemical characterization of a novel serine protease from Ornithinibacillus caprae L9T with hide-dehairing activity. J. Microbiol. Biotechnol. 2022, 32, 99–109. [Google Scholar] [CrossRef]
- Vitali, F.C.; Nomura, L.H.; Delai, D.; Henriques DH, N.; Alves AM, H.; da Fonseca Roberti Garcia, L.; Bortoluzzi, E.A.; Teixeira, C.S. Disinfection and surface changes of gutta-percha cones after immersion in sodium hypochlorite solution containing surfactant. Microsc. Res. Tech. 2019, 82, 1290–1296. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Ginther, C.L. Sporulation and the production of serine protease and cephamycin C by Streptomyces lactamdurans. Antimicrob. Agents Chemother. 1979, 15, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Wanderley, M.C.; Duarte Neto, J.M.; Lima, C.; Silverio, S.I.; Filho, J.L.; Teixeira, J.A.; Porto, A.L. Production and characterization of collagenase by Penicillium sp. UCP 1286 isolated from Caatinga soil. J. Appl. Biol. Biotechnol. 2016, 4, 1–10. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
Purification Steps | Volume (mL) | TP (mg) | Pa (U/mL) | SPa (U/mg) | Y (%) | PF |
---|---|---|---|---|---|---|
Crude Extract | 100 | 410.83 | 144.64 | 0.35 | 100.00 | 1.00 |
Acetone | 10 | 16.80 | 141.31 | 8.40 | 4.09 | 23.88 |
Etanol | 10 | 12.37 | 134.71 | 10.88 | 3.01 | 30.92 |
Salting out | 10 | 9.44 | 132.28 | 14.00 | 2.29 | 39.77 |
HiTrap ANX FF | 1.0 | 0.116 | 92.60 | 795.98 | 0.028 | 2260.8 |
Residual Activity (%) | |||||||
---|---|---|---|---|---|---|---|
Íons | Inhibitors | Surfactants (%, v/v) | |||||
20 mM | 10 mM | 0.5% | 1% | 2% | |||
Zn2+ | 66.8 | EDTA | 82.4 | Tween 20 | 96.5 | 96.8 | 94.9 |
Ca2+ | 103.9 | Pepstatin A | 96.2 | Tween 80 | 90.6 | 91.2 | 96.9 |
Mg2+ | 61.6 | PMSF | 36.4 | Triton X100 | 91.8 | 96.2 | 97.7 |
Na+ | 96.4 | Iodoacetic Acid | 87.6 | SDS | 55.6 | 26.0 | 16.8 |
K+ | 62.5 | β-Mercapto | 100.1 | ||||
Ba2+ | 64.6 | ||||||
Fe2+ | 61.3 | ||||||
Cu2+ | 68.2 | ||||||
Control | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobral, A.F.; Ramos, D.G.; Lima, B.C.S.; Liu, T.P.S.L.; Silva, M.R.O.B.d.; Lino, L.H.S.; Cardoso, K.B.B.; Albuquerque, W.W.C.; Nascimento, T.P.; Brandão Costa, R.M.P. Purification and Characterization of a Protease Using Aspergillus oryzae Under Submerged Fermentation Using Dairy By-Products as a Substrate. Catalysts 2025, 15, 575. https://doi.org/10.3390/catal15060575
Sobral AF, Ramos DG, Lima BCS, Liu TPSL, Silva MROBd, Lino LHS, Cardoso KBB, Albuquerque WWC, Nascimento TP, Brandão Costa RMP. Purification and Characterization of a Protease Using Aspergillus oryzae Under Submerged Fermentation Using Dairy By-Products as a Substrate. Catalysts. 2025; 15(6):575. https://doi.org/10.3390/catal15060575
Chicago/Turabian StyleSobral, Aline Ferreira, Diego Gomes Ramos, Bárbara Cibele Souza Lima, Tatiana Pereira Shiu Lin Liu, Maria Rafaele Oliveira Bezerra da Silva, Luiz Henrique Svintiskas Lino, Kethylen Barbara Barbosa Cardoso, Wendell Wagner Campos Albuquerque, Thiago Pajeú Nascimento, and Romero Marcos Pedrosa Brandão Costa. 2025. "Purification and Characterization of a Protease Using Aspergillus oryzae Under Submerged Fermentation Using Dairy By-Products as a Substrate" Catalysts 15, no. 6: 575. https://doi.org/10.3390/catal15060575
APA StyleSobral, A. F., Ramos, D. G., Lima, B. C. S., Liu, T. P. S. L., Silva, M. R. O. B. d., Lino, L. H. S., Cardoso, K. B. B., Albuquerque, W. W. C., Nascimento, T. P., & Brandão Costa, R. M. P. (2025). Purification and Characterization of a Protease Using Aspergillus oryzae Under Submerged Fermentation Using Dairy By-Products as a Substrate. Catalysts, 15(6), 575. https://doi.org/10.3390/catal15060575