Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems
Abstract
1. Introduction
2. Traditional Approaches for Enzyme Immobilization
3. Major Factors Affecting Enzyme Immobilization Efficiency
4. Matrixes for Enzyme Immobilization
4.1. Natural Organic Carriers
4.2. Synthetic Organic Carriers
4.3. Natural Inorganic Biopolymers
4.4. Hybrid and Composite Carriers
4.5. Semi-Synthetic Polymers
4.6. Cross-Linked Polymers
5. Innovative Approaches for Enzyme Immobilization
5.1. Nanomaterial-Based Enzyme Immobilization
5.1.1. Polymer-Based Enzyme Immobilization
5.1.2. Metal–Organic Frame (MOF)-Based Enzyme Immobilization
5.1.3. Magnetic Nanoparticles (MNP)-Based Enzyme Immobilization
Enzyme | MOF | Immobilization Method | Enzyme Reaction | Improved Enzyme Application | Ref. |
---|---|---|---|---|---|
Horseradish peroxidase Lysozyme | UiO-66-F4 | Encapsulation | 3,3′,5,5′ tetramethylbenzidine (TMB) used as the substrate and H2O2 as an oxidizing agent in the presence of 1-phenyl-ethanol with vinyl acetate and chitosan. | Improved activity and stability, enhanced temperature tolerance over a wide range. Not exposed to digestive enzyme pepsin or long-term storage, providing protection from harsh conditions. | [133] |
Lipase | UiO-66 | Encapsulation | For separation, 1-phenyl-ethanol racemates into (S)-enantiomers through chiral resolution of ((S)-phenyl ethanol) for production of critical chemicals and medicines. | Maintenance of enzyme activity, protective performance towards enzymes under harsh conditions, and excellent reusability. | [134] |
β-glucosidase (β-G) | MOF-74-2-MI | Encapsulation | Cellobiose and cellulose hydrolysis to glucose. | Enzyme with a domain-limited space for long-term stability, low leaching ability, recyclability, and tolerance. | [135] |
β-glucosidase (β-G) | (MCS/β-G) | Surface adsorption | Hydrolysis of cellobiose into glucose. | Maximized enzyme catalytic retention activity, stability under acidic conditions, structural stability, protective effect of the “core−shell” structure of Ca BDC on enzyme activity at higher temperatures and with denaturants. Maintain a stable active conformation during separation and washing. Improved enzyme affinity to the substrate, increased mass transfer resistance. | [136] |
Laccase | Polydopamine-coated magnetic graphene (PDA-MGO) | Covalent binding | Enzyme system exhibits superior removal efficiencies for 2,4 DCP and BPA pollutant degradation. | More active than free laccase, with a wider pH and temperature range. Maintained approximately 80% of its initial activity, even after two hours of incubation at 50 °C. Exhibited remarkable removal efficiencies of 97.0% and 83.9% toward 2,4-DCP. High enzymatic activity, environmental stability, and excellent re-usability. The laccase ILs PDA MGO system demonstrated superior reusability. | [137] |
5.1.4. Carbon Nanotubes and Graphene-Based Enzyme Immobilization
5.1.5. DNA-Directed Enzyme Immobilization
5.1.6. Organic–Inorganic Hybrid Nanomaterials-Based Enzyme Immobilization
5.2. Challenges and Limitations of Nanomaterial-Based Immobilization
5.3. Microfluidic Device for Enzyme Immobilization
5.4. Self-Healing Hydrogels for Enzyme Immobilization
5.5. Integration of Synthetic Biology and Immobilization
Enzyme | Hydrogel | Improved Enzyme Activity | Application | Refs. |
---|---|---|---|---|
Xylanase | Superabsorbent hydrogels (SHs); carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide) hydrogel | Enhanced hydrolysis performance and reusability of the immobilized PersiXyn4. Improved the bleaching of paper pulp. | Hydrolysis of pulp paper to release reducing sugar. | [200] |
Lipase | Bacterial cellulose (BC)–chitosan composite hydrogel | Highest thermal and operational stability and improved enzyme half-life time. | Hydrolysis of p-nitrophenyl butyrate to produce p-nitrophenol for drug, fungicide, and dye manufacturing. | [201] |
Lipase | Polyvinyl alcohol/sodium alginate (PVA/Alg) hydrogel | Noticeable improvement in storage stability, limitation of enzyme leakage, improved enzyme affinity to the substrate, and catalytic efficiency. | Catalyzing ρ-nitrophenylphosphate(ρNPP) to produce p-nitrophenol, which is a chemical intermediate for the production of many substances. | [202] |
Carbonyl reductase and lipase | Poly (2-hydroxyethyl methacrylate)–calcium magnesium carbonate (pHEMA-CaMg(CO3)2) hydrogel | Immobilized enzymes, maintaining over 80% catalytic activity after one month, with superior stability. | Aryl ketone reduction and esters hydrolysis. | [203] |
β-mannanase | Sodium alginate-grafted-β-cyclodextrin | Enzyme was reused 15 times and retained its 70% activity, meanwhile it showed 60% activity after 30 days of storage at 4 °C. Increased the thermostability and half-life of the enzyme and reduced activation energy. | Enzymatic catalysis of locust bean gum (LBG) to produce mannose sugar. | [204] |
Invertase | Poly (acrylamide/vinylsulfonic acid) PA/VSA and poly (acrylamide) PA hydrogels; | Maintained their stability over a wide pH and temperature range, with storage stability, after successive batch reaction. | Sucrose hydrolysis. | [205] |
Cellulase | carboxymethyl cellulose grafted copolymers of 2-acrylamido-2methyl propane sulfonate and acrylamide (CMC-g-poly (AMPS-co-AAm)) hydrogels | Enzyme retained nearly 60% of its maximum activity at 90 °C, with storage stability. Enzyme showed 154.8% increase in conversion of alkaline-treated sugar beet pulp. | Hydrolyzing lignocellulosic biomass. | [206] |
Cellulase | Carboxymethyl cellulose-based hydrogel | Stability in the presence of multiple chemicals, protected from enzyme aggregation, extending its industrial applications. | Lignocellulose hydrolysis of rice straw in harsh environment. Robust enzyme stability under extreme salt concentrations and high temperatures. | [207] |
5.6. Carrier-Free Immobilized Enzymes
5.7. 3D-Printing Technology for Enzyme Immobilization
5.8. AI-Based Enzyme Immobilization
6. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.-S. Enzyme immobilization technologies and industrial applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef] [PubMed]
- Kikani, B.; Patel, R.; Thumar, J.; Bhatt, H.; Rathore, D.S.; Koladiya, G.A.; Singh, S.P. Solvent tolerant enzymes in extremophiles: Adaptations and applications. Int. J. Biol. Macromol. 2023, 238, 124051. [Google Scholar] [CrossRef] [PubMed]
- Katchalski-Katzir, E. Immobilized enzymes—Learning from past successes and failures. Trends Biotechnol. 1993, 11, 471–478. [Google Scholar] [CrossRef]
- Khafaga, D.S.; Muteeb, G.; Elgarawany, A.; Aatif, M.; Farhan, M.; Allam, S.; Almatar, B.A.; Radwan, M.G. Green nanobiocatalysts: Enhancing enzyme immobilization for industrial and biomedical applications. PeerJ 2024, 12, e17589. [Google Scholar] [CrossRef]
- Robescu, M.S.; Bavaro, T. A comprehensive guide to enzyme immobilization: All you need to know. Molecules 2025, 30, 939. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Mohamad, M.; Rashid, M.U.; Norizan, M.N.; Hamzah, F.; Mat, H.B. Recent advances in enzyme immobilisation strategies: An overview of techniques and composite carriers. J. Compos. Sci. 2023, 7, 488. [Google Scholar] [CrossRef]
- Ashkan, Z.; Hemmati, R.; Homaei, A.; Dinari, A.; Jamlidoost, M.; Tashakor, A. Immobilization of enzymes on nanoinorganic support materials: An update. Int. J. Biol. Macromol. 2021, 168, 708–721. [Google Scholar] [CrossRef]
- Federsel, H.-J.; Moody, T.S.; Taylor, S.J. Recent trends in enzyme immobilization—Concepts for expanding the biocatalysis toolbox. Molecules 2021, 26, 2822. [Google Scholar] [CrossRef]
- Berillo, D.; Malika, T.; Baimakhanova, B.B.; Sadanov, A.K.; Berezin, V.E.; Trenozhnikova, L.P.; Baimakhanova, G.B.; Amangeldi, A.A.; Kerimzhanova, B. An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products. Gels 2024, 10, 646. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, J.; Liu, Z. Enhanced activity of immobilized or chemically modified enzymes. ACS Catal. 2015, 5, 4503–4513. [Google Scholar] [CrossRef]
- Khan, M.U.; Farid, A.; Liu, S.; Zhen, L.; Alahmad, K.; Chen, Z.; Kong, L. Innovative approaches for enzyme immobilization in milk processing: Advancements and industrial applications. Crit. Rev. Food Sci. Nutr. 2025, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Al-sareji, O.J.; Meiczinger, M.; Somogyi, V.; Al-Juboori, R.A.; Grmasha, R.A.; Stenger-Kovács, C.; Jakab, M.; Hashim, K.S. Removal of emerging pollutants from water using enzyme-immobilized activated carbon from coconut shell. J. Environ. Chem. Eng. 2023, 11, 109803. [Google Scholar] [CrossRef]
- Vorvi, S.; Tsougeni, K.; Tserepi, A.; Kakabakos, S.; Petrou, P.; Gogolides, E. Enhanced Immobilization of Enzymes on Plasma Micro-Nanotextured Surfaces and Microfluidics: Application to HRP. Molecules 2024, 29, 4736. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, L.; Liang, H.; Chen, G.; Wu, J.; Xia, W.; Gao, D. Removal of benzo [a] pyrene from the soil by adsorption coupled with degradation on saponin-modified bentonite immobilized crude enzymes. Environ. Res. 2024, 261, 119716. [Google Scholar] [CrossRef]
- Imam, H.T.; Marr, P.C.; Marr, A.C. Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chem. 2021, 23, 4980–5005. [Google Scholar] [CrossRef]
- Demirci, S.; Sahiner, M.; Yilmaz, S.; Karadag, E.; Sahiner, N. Enhanced enzymatic activity and stability by in situ entrapment of α-Glucosidase within super porous p (HEMA) cryogels during synthesis. Biotechnol. Rep. 2020, 28, e00534. [Google Scholar] [CrossRef]
- Ellis, G.A.; Díaz, S.A.; Medintz, I.L. Enhancing enzymatic performance with nanoparticle immobilization: Improved analytical and control capability for synthetic biochemistry. Curr. Opin. Biotechnol. 2021, 71, 77–90. [Google Scholar] [CrossRef]
- Cavalcante, F.T.; Cavalcante, A.L.; de Sousa, I.G.; Neto, F.S.; dos Santos, J.C. Current status and future perspectives of supports and protocols for enzyme immobilization. Catalysts 2021, 11, 1222. [Google Scholar] [CrossRef]
- Attique, S.A.; Hussain, N.; Bilal, M.; Iqbal, H.M. Enzyme immobilization approaches. In Biocatalyst Immobilization; Elsevier: Amsterdam, The Netherlands, 2023; pp. 37–54. [Google Scholar]
- Hong, J.; Jung, D.; Park, S.; Oh, Y.; Oh, K.K.; Lee, S.H. Immobilization of laccase via cross-linked enzyme aggregates prepared using genipin as a natural cross-linker. Int. J. Biol. Macromol. 2021, 169, 541–550. [Google Scholar] [CrossRef]
- Venkataraman, S.; Vaidyanathan, V.K. Synthesis of magnetically recyclable porous cross-linked aggregates of Tramates versicolor MTCC 138 laccase for the efficient removal of pentachlorophenol from aqueous solution. Environ. Res. 2023, 229, 115899. [Google Scholar] [CrossRef]
- Velasco-Lozano, S.; Rocha-Martin, J.; Santos, J.C.d. Designing carrier-free immobilized enzymes for biocatalysis. Front. Media SA 2022, 10, 924743. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Kaushal, D.; Dhiman, V.K.; Kanwar, S.S.; Singh, D.; Dhiman, V.K.; Pandey, H. An insight in developing carrier-free immobilized enzymes. Front. Bioeng. Biotechnol. 2022, 10, 794411. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, T.; Giaretta, J.; Zulli, R.; Rath, R.J.; Farajikhah, S.; Talebian, S.; Dehghani, F. Covalent immobilization: A review from an enzyme perspective. Chem. Eng. J. 2024, 503, 158054. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef]
- Bolivar, J.M.; Woodley, J.M.; Fernandez-Lafuente, R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem. Soc. Rev. 2022, 51, 6251–6290. [Google Scholar] [CrossRef]
- Wahab, R.A.; Elias, N.; Abdullah, F.; Ghoshal, S.K. On the taught new tricks of enzymes immobilization: An all-inclusive overview. React. Funct. Polym. 2020, 152, 104613. [Google Scholar] [CrossRef]
- Remonatto, D.; Izidoro, B.F.; Mazziero, V.T.; Catarino, B.P.; do Nascimento, J.F.C.; Cerri, M.O.; Andrade, G.S.S.; de Paula, A.V. 3D printing and enzyme immobilization: An overview of current trends. Bioprinting 2023, 33, e00289. [Google Scholar] [CrossRef]
- Kujawa, J.; Głodek, M.; Li, G.; Al-Gharabli, S.; Knozowska, K.; Kujawski, W. Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. Sci. Total Environ. 2021, 801, 149647. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, T.; Wang, X.; Xu, L.; Yan, Y. Biodiesel Synthesis Catalyzed by Burkholderia cenocepacia Lipase Supported on Macroporous Resin NKA in Solvent-Free and Isooctane Systems. Energy Fuels 2011, 25, 1206–1212. [Google Scholar] [CrossRef]
- Zahirinejad, S.; Hemmati, R.; Homaei, A.; Dinari, A.; Hosseinkhani, S.; Mohammadi, S.; Vianello, F. Nano-organic supports for enzyme immobilization: Scopes and perspectives. Colloids Surf. B Biointerfaces 2021, 204, 111774. [Google Scholar] [CrossRef]
- Yaashikaa, P.; Devi, M.K.; Kumar, P.S. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. Chemosphere 2022, 299, 134390. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.C.C.; de Souza e Castro, N.L.; Cipolatti, E.P.; Fernandez-Lafuente, R.; Manoel, E.A.; Freire, D.M.G.; Pinto, J.C. Effects of reaction operation policies on properties of core–shell polymer supports used for preparation of highly active biocatalysts. Macromol. React. Eng. 2019, 13, 1800055. [Google Scholar] [CrossRef]
- Wang, K.-Y.; Zhang, J.; Hsu, Y.-C.; Lin, H.; Han, Z.; Pang, J.; Yang, Z.; Liang, R.-R.; Shi, W.; Zhou, H.-C. Bioinspired framework catalysts: From enzyme immobilization to biomimetic catalysis. Chem. Rev. 2023, 123, 5347–5420. [Google Scholar] [CrossRef] [PubMed]
- Prokopijević, M. Natural polymers: Suitable carriers for enzyme immobilization. Biol. Serbica 2021, 43, 43–49. [Google Scholar]
- Sasikanth, V.; Meganathan, B.; Rathinavel, T.; Seshachalam, S.; Nallappa, H.; Gopi, B. General overview of biopolymers: Structure and properties. Phys. Sci. Rev. 2024, 9, 1857–1883. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M. Naturally-derived biopolymers: Potential platforms for enzyme immobilization. Int. J. Biol. Macromol. 2019, 130, 462–482. [Google Scholar] [CrossRef]
- MohammadKarimi, S.; Ershad-Langroudi, A.; Alizadegan, F. Surface analysis and water contact angle of modified natural biopolymers. In Handbook of Natural Polymers; Elsevier: Amsterdam, The Netherlands, 2024; Volume 2, pp. 473–500. [Google Scholar]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R. A review on the modification of cellulose and its applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef]
- Jejurikar, A.; Seow, X.T.; Lawrie, G.; Martin, D.; Jayakrishnan, A.; Grøndahl, L. Degradable alginate hydrogels crosslinked by the macromolecular crosslinker alginate dialdehyde. J. Mater. Chem. 2012, 22, 9751–9758. [Google Scholar] [CrossRef]
- Intisar, A.; Hedar, M.; Sharif, A.; Ahmed, E.; Hussain, N.; Hadibarata, T.; Shariati, M.A.; Smaoui, S. Enzyme immobilization on alginate biopolymer for biotechnological applications. In Microbial Biomolecules; Elsevier: Amsterdam, The Netherlands, 2023; pp. 471–488. [Google Scholar]
- Bartolomeu, G.L. Alginate Hydrogels as a Substrate for Nerve Growth. Master’s Thesis, Universidade NOVA de Lisboa, Lisbon, Portugal, 2023. [Google Scholar]
- Wang, J.; Zhuang, S. Chitosan-based materials: Preparation, modification and application. J. Clean. Prod. 2022, 355, 131825. [Google Scholar] [CrossRef]
- Wang, J.J.; Zeng, Z.W.; Xiao, R.Z.; Xie, T.; Zhou, G.L.; Zhan, X.R.; Wang, S.L. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed. 2011, 6, 765–774. [Google Scholar]
- Shojaei, F.; Homaei, A.; Taherizadeh, M.R.; Kamrani, E. Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: An eco-friendly nanobiocatalyst. Int. J. Food Prop. 2017, 20 (Suppl. S2), 1413–1423. [Google Scholar]
- Wan, Y.; Zhou, J.; Ni, J.; Cai, Y.; Cohen Stuart, M.; Wang, J. Electrostatically mediated in situ polymerization for enzyme immobilization and activation. Biomacromolecules 2024, 25, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Bisht, M.; Thayallath, S.K.; Bharadwaj, P.; Franklin, G.; Mondal, D. Biomass-derived functional materials as carriers for enzymes: Towards sustainable and robust biocatalysts. Green Chem. 2023, 25, 4591–4624. [Google Scholar] [CrossRef]
- Kumar, N.K.M.F.; Meng, C.C.; Manas, N.H.A.; Ahmad, R.A.; Fuzi, S.F.Z.M.; Rahman, R.A.; Illias, R.M. Immobilization of maltogenic amylase in alginate-chitosan beads for improved enzyme retention and stability. Malays. J. Fundam. Appl. Sci. 2022, 18, 43–51. [Google Scholar] [CrossRef]
- Bai, Y.; Jing, Z.; Ma, R.; Wan, X.; Liu, J.; Huang, W. A critical review of enzymes immobilized on chitosan composites: Characterization and applications. Bioprocess Biosyst. Eng. 2023, 46, 1539–1567. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Gelatin alternatives for the food industry: Recent developments, challenges and prospects. Trends Food Sci. Technol. 2008, 19, 644–656. [Google Scholar] [CrossRef]
- Chen, S.; Song, N.; Liao, X.; Shi, B. Immobilization of catalase on Fe (III) modified collagen fiber. Sheng Wu Gong Cheng Xue Bao = Chin. J. Biotechnol. 2011, 27, 1076–1081. [Google Scholar]
- Xin, M.; Zhang, X.; Yang, J.; Chen, M.; Ma, X.; Liu, J. Preparation and electrochemical sensing application of electrospun porous organosilica fibers. Electrochem. Commun. 2014, 48, 123–126. [Google Scholar] [CrossRef]
- Mehrasa, M.; Asadollahi, M.A.; Ghaedi, K.; Salehi, H.; Arpanaei, A. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering. Int. J. Biol. Macromol. 2015, 79, 687–695. [Google Scholar] [CrossRef]
- Khan, R.S.; Rather, A.H.; Wani, T.U.; Rather, S.u.; Amna, T.; Hassan, M.S.; Sheikh, F.A. Recent trends using natural polymeric nanofibers as supports for enzyme immobilization and catalysis. Biotechnol. Bioeng. 2023, 120, 22–40. [Google Scholar] [CrossRef]
- Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W. Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem. 2011, 46, 1565–1571. [Google Scholar] [CrossRef]
- Ceniceros, E.S.; Ilyina, A.; Esquivel, J.C.; Menchaca, D.R.; Espinoza, J.F.; Rodriguez, O.M. Entrapment of enzymes in natural polymer extracted from residue of food industry: Preparation methods, partial characterisation and possible application. Becth Mock 2003, 44, 84–87. [Google Scholar]
- Munarin, F.; Tanzi, M.C.; Petrini, P. Advances in biomedical applications of pectin gels. Int. J. Biol. Macromol. 2012, 51, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Matto, M.; Husain, Q. Entrapment of porous and stable concanavalin A–peroxidase complex into hybrid calcium alginate–pectin gel. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2006, 81, 1316–1323. [Google Scholar] [CrossRef]
- Prokopijevic, M.; Prodanovic, O.; Spasojevic, D.; Kovacevic, G.; Polovic, N.; Radotic, K.; Prodanovic, R. Tyramine-modified pectins via periodate oxidation for soybean hull peroxidase induced hydrogel formation and immobilization. Appl. Microbiol. Biotechnol. 2017, 101, 2281–2290. [Google Scholar] [CrossRef]
- Satar, R.; Matto, M.; Husain, Q. Studies on calcium alginate-pectin gel entrapped concanavalin A-bitter gourd (Momordica charantia) peroxidase complex. J. Sci. Ind. Res. 2008, 67, 609–615. [Google Scholar]
- Khalid, M.Y.; Arif, Z.U. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag. Shelf Life 2022, 33, 100892. [Google Scholar] [CrossRef]
- Jung, K.; Corrigan, N.; Wong, E.H.; Boyer, C. Bioactive synthetic polymers. Adv. Mater. 2022, 34, 2105063. [Google Scholar] [CrossRef]
- Rather, A.H.; Khan, R.S.; Wani, T.U.; Beigh, M.A.; Sheikh, F.A. Overview on immobilization of enzymes on synthetic polymeric nanofibers fabricated by electrospinning. Biotechnol. Bioeng. 2022, 119, 9–33. [Google Scholar] [CrossRef]
- Fromager, B.; Marhuenda, E.; Louis, B.; Bakalara, N.; Cambedouzou, J.; Cornu, D. Recent Advances in Electrospun Fibers for Biological Applications. Macromol 2023, 3, 569–613. [Google Scholar] [CrossRef]
- Guajardo, N. Immobilization of lipases using poly (vinyl) alcohol. Polymers 2023, 15, 2021. [Google Scholar] [CrossRef]
- Lyu, X.; Gonzalez, R.; Horton, A.; Li, T. Immobilization of enzymes by polymeric materials. Catalysts 2021, 11, 1211. [Google Scholar] [CrossRef]
- Panatdasirisuk, W.; Faungnawakij, K.; Champreda, V. Novel fabrication via one-step polymerization and alginate cage-assisted shaping technique for polyacrylamide beads as a highly stable biocatalyst for xylan hydrolysis. React. Funct. Polym. 2023, 190, 105641. [Google Scholar] [CrossRef]
- Muthukumar, J.; Kandukuri, V.A.; Chidambaram, R. A critical review on various treatment, conversion, and disposal approaches of commonly used polystyrene. Polym. Bull. 2024, 81, 2819–2845. [Google Scholar] [CrossRef]
- Sánchez-Otero, M.G.; Quintana-Castro, R.; Rojas-Vázquez, A.S.; Badillo-Zeferino, G.L.; Mondragón-Vázquez, K.; Espinosa-Luna, G.; Kumar Nadda, A.; Oliart-Ros, R.M. Polypropylene as a selective support for the immobilization of lipolytic enzymes: Hyper-activation, purification and biotechnological applications. J. Chem. Technol. Biotechnol. 2022, 97, 436–445. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Zamboulis, A.; Koumentakou, I.; Michailidou, G.; Noordam, M.J.; Bikiaris, D.N. Biocompatible synthetic polymers for tissue engineering purposes. Biomacromolecules 2022, 23, 1841–1863. [Google Scholar] [CrossRef]
- Groh, K.J.; Arp, H.P.H.; MacLeod, M.; Wang, Z. Assessing and managing environmental hazards of polymers: Historical development, science advances and policy options. Environ. Sci. Process. Impacts 2023, 25, 10–25. [Google Scholar] [CrossRef]
- Nigro, L.; Magni, S.; Ortenzi, M.A.; Gazzotti, S.; Signorini, S.G.; Sbarberi, R.; Della Torre, C.; Binelli, A. Assessment of behavioural effects of three water-soluble polymers in zebrafish embryos. Sci. Total Environ. 2023, 893, 164843. [Google Scholar] [CrossRef]
- Mtibe, A.; Motloung, M.P.; Bandyopadhyay, J.; Ray, S.S. Synthetic biopolymers and their composites: Advantages and limitations—An overview. Macromol. Rapid Commun. 2021, 42, 2100130. [Google Scholar] [CrossRef]
- Lee, S.E.; Kim, D.Y.; Jeong, T.S.; Park, Y.S. Micro-and Nano-Plastic-Induced Adverse Health Effects on Lungs and Kidneys Linked to Oxidative Stress and Inflammation. Life 2025, 15, 392. [Google Scholar] [CrossRef]
- Das, A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Sci. Total Environ. 2023, 895, 165076. [Google Scholar] [CrossRef] [PubMed]
- Magner, E. Immobilisation of enzymes on mesoporous silicate materials. Chem. Soc. Rev. 2013, 42, 6213–6222. [Google Scholar] [CrossRef] [PubMed]
- Aaliya, B.; Sunooj, K.V.; Lackner, M. Biopolymer composites: A review. Int. J. Biobased Plast. 2021, 3, 40–84. [Google Scholar] [CrossRef]
- Das, B.; Patra, S. Some recent innovations related to enzyme immobilization. In Biocatalyst Immobilization; Elsevier: Amsterdam, The Netherlands, 2023; pp. 149–163. [Google Scholar]
- Lakhani, P.; Bhanderi, D.; Modi, C.K. Silica-supported ionic liquids as versatile catalysts: A case study. J. Mol. Liq. 2024, 408, 125306. [Google Scholar] [CrossRef]
- Telange, D.R.; Pethe, A.M.; Agrawal, S.S.; Telrandhe, U.B.; Bobade, P.S. Functionalized Magnetic Nanoparticles for Enzyme Immobilization. In Functionalized Magnetic Nanoparticles for Theranostic Applications; Wiley: Hoboken, NJ, USA, 2024; pp. 319–346. [Google Scholar]
- Zou, B.; Hu, Y.; Cui, F.; Jiang, L.; Yu, D.; Huang, H. Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. J. Colloid Interface Sci. 2014, 417, 210–216. [Google Scholar] [CrossRef]
- Vallés, D.; Furtado, S.; Villadóniga, C.; Cantera, A.M.B. Adsorption onto alumina and stabilization of cysteine proteinases from crude extract of Solanum granuloso-leprosum fruits. Process Biochem. 2011, 46, 592–598. [Google Scholar] [CrossRef]
- Budharaju, H.; Suresh, S.; Sekar, M.P.; De Vega, B.; Sethuraman, S.; Sundaramurthi, D.; Kalaskar, D.M. Ceramic materials for 3D printing of biomimetic bone scaffolds–current state-of-the-art & future perspectives. Mater. Des. 2023, 231, 112064. [Google Scholar]
- Babaki, M.; Yousefi, M.; Habibi, Z.; Brask, J.; Mohammadi, M. Preparation of highly reusable biocatalysts by immobilization of lipases on epoxy-functionalized silica for production of biodiesel from canola oil. Biochem. Eng. J. 2015, 101, 23–31. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Narayanan, S.S. Horseradish peroxidase and toluidine blue covalently immobilized leak-free sol-gel composite biosensor for hydrogen peroxide. Mater. Sci. Eng. C 2017, 70, 223–230. [Google Scholar] [CrossRef]
- Gao, J.; Feng, K.; Li, H.; Jiang, Y.; Zhou, L. Immobilized lipase on porous ceramic monoliths for the production of sugar-derived oil gelling agent. RSC Adv. 2015, 5, 68601–68609. [Google Scholar] [CrossRef]
- de la Fuente-Jiménez, J.L.; Korgel, B.A.; Ulises, A.; Sharmal, A. Drug-delivery using inorganic and organic nanoparticles. In Nanochemistry; CRC Press: Boca Raton, FL, USA, 2023; pp. 194–228. [Google Scholar]
- Yang, X.-Y.; Tian, G.; Jiang, N.; Su, B.-L. Immobilization technology: A sustainable solution for biofuel cell design. Energy Environ. Sci. 2012, 5, 5540–5563. [Google Scholar] [CrossRef]
- Riccardi, C.M.; Kasi, R.M.; Kumar, C.V. Nanoarmoring of enzymes by interlocking in cellulose fibers with poly (acrylic acid). In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 590, pp. 475–500. [Google Scholar]
- Kara, F.; Aksoy, E.A.; Calamak, S.; Hasirci, N.; Aksoy, S. Immobilization of heparin on chitosan-grafted polyurethane films to enhance anti-adhesive and antibacterial properties. J. Bioact. Compat. Polym. 2016, 31, 72–90. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Liang, Y.; Jiang, Z.; Jiang, Y.; Zhang, L. Facile fabrication of organic–inorganic hybrid beads by aminated alginate enabled gelation and biomimetic mineralization. J. Biomater. Sci. Polym. Ed. 2013, 24, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Vatsyayan, P.; Bordoloi, S.; Goswami, P. Large catalase based bioelectrode for biosensor application. Biophys. Chem. 2010, 153, 36–42. [Google Scholar] [CrossRef]
- Ambrogio, M.W.; Thomas, C.R.; Zhao, Y.-L.; Zink, J.I.; Stoddart, J.F. Mechanized silica nanoparticles: A new frontier in theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 903–913. [Google Scholar] [CrossRef]
- Yuce-Dursun, B.; Cigil, A.B.; Dongez, D.; Kahraman, M.V.; Ogan, A.; Demir, S. Preparation and characterization of sol–gel hybrid coating films for covalent immobilization of lipase enzyme. J. Mol. Catal. B Enzym. 2016, 127, 18–25. [Google Scholar] [CrossRef]
- Singthong, J.; Thongkaew, C. Using hydrocolloids to decrease oil absorption in banana chips. LWT-Food Sci. Technol. 2009, 42, 1199–1203. [Google Scholar] [CrossRef]
- Mai, T.H.A. Biochemical studies on the immobilized lactase in the combined alginate–carboxymethyl cellulose gel. Biochem. Eng. J. 2013, 74, 81–87. [Google Scholar] [CrossRef]
- Holyavka, M.; Redko, Y.; Goncharova, S.; Lavlinskaya, M.; Sorokin, A.; Kondratyev, M.; Artyukhov, V. Novel Hybrid Catalysts of Cysteine Proteases Enhanced by Chitosan and Carboxymethyl Chitosan Micro-and Nanoparticles. Polymers 2024, 16, 3111. [Google Scholar] [CrossRef]
- Selloum, D.; Abou Chaaya, A.; Bechelany, M.; Rouessac, V.; Miele, P.; Tingry, S. A highly efficient gold/electrospun PAN fiber material for improved laccase biocathodes for biofuel cell applications. J. Mater. Chem. A 2014, 2, 2794–2800. [Google Scholar] [CrossRef]
- Li, G.; Nandgaonkar, A.G.; Lu, K.; Krause, W.E.; Lucia, L.A.; Wei, Q. Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: A de novo adsorption and biocatalytic synergy. RSC Adv. 2016, 6, 41420–41427. [Google Scholar] [CrossRef]
- Chen, N.; Chang, B.; Shi, N.; Yan, W.; Lu, F.; Liu, F. Cross-linked enzyme aggregates immobilization: Preparation, characterization, and applications. Crit. Rev. Biotechnol. 2023, 43, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.U.; Nawaz, M.A.; Pervez, S.; Jamal, M.; Attaullah, M.; Aman, A.; Qader, S.A.U. Encapsulation of pectinase within polyacrylamide gel: Characterization of its catalytic properties for continuous industrial uses. Heliyon 2020, 6, e04578. [Google Scholar] [CrossRef] [PubMed]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly (ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. [Google Scholar] [CrossRef]
- Li, X.Y.; Yu, S.Y.; Park, H.J.; Zhao, M. Polyethyleneglycol diacrylate microspheres: A novel carrier for laccase immobilisation. J. Microencapsul. 2015, 32, 22–28. [Google Scholar] [CrossRef]
- Choi, D.; Lee, W.; Park, J.; Koh, W. Preparation of poly (ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization. Bio-Med. Mater. Eng. 2008, 18, 345–356. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, A.; Wen, X. Enhanced stability and catalytic performance of immobilized phospholipase D on chitosan-encapsulated magnetic nanoparticles using oxidized dextran and glutaraldehyde as cross-linkers. Biochem. Eng. J. 2024, 212, 109499. [Google Scholar] [CrossRef]
- Zhang, J.; Lovell, J.F.; Shi, J.; Zhang, Y. Nanomaterials for co-immobilization of multiple enzymes. BMEMat 2024, 3, e12080. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Rafa, N.; Chowdhury, A.T.; Chowdhury, S.; Nahrin, M.; Islam, A.S.; Ong, H.C. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environ. Res. 2022, 204, 111967. [Google Scholar] [CrossRef]
- Poorakbar, E.; Saboury, A.A.; Laame Rad, B.; Khoshnevisan, K. Immobilization of cellulase onto core-shell magnetic gold nanoparticles functionalized by aspartic acid and determination of its activity. Protein J. 2020, 39, 328–336. [Google Scholar] [CrossRef]
- Kumar, A.; Dutt, R.; Srivastava, A.; Kayastha, A.M. Immobilization of α-amylase onto functionalized molybdenum diselenide nanoflowers (MoSe2-NFs) as scaffolds: Characterization, kinetics, and potential applications in starch-based industries. Food Chem. 2024, 442, 138431. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, J.; Jankowska, K.; Bachosz, K.; Kijeńska-Gawrońska, E.; Zgoła-Grześkowiak, A.; Kaczorek, E.; Jesionowski, T. A promising laccase immobilization using electrospun materials for biocatalytic degradation of tetracycline: Effect of process conditions and catalytic pathways. Catal. Today 2020, 348, 127–136. [Google Scholar] [CrossRef]
- Chen, H.Y.; Cheng, K.C.; Hsu, R.J.; Hsieh, C.W.; Wang, H.T.; Ting, Y. Enzymatic degradation of ginkgolic acid by laccase immobilized on novel electrospun nanofiber mat. J. Sci. Food Agric. 2020, 100, 2705–2712. [Google Scholar] [CrossRef]
- Zdarta, J.; Antecka, K.; Frankowski, R.; Zgoła-Grześkowiak, A.; Ehrlich, H.; Jesionowski, T. The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds. Sci. Total Environ. 2018, 615, 784–795. [Google Scholar] [CrossRef]
- Jankowska, K.; Su, Z.; Sigurdardóttir, S.B.; Staszak, M.; Pinelo, M.; Zdarta, J.; Jesionowski, T. Tailor-made novel electrospun polystyrene/poly (d, l-lactide-co-glycolide) for oxidoreductases immobilization: Improvement of catalytic properties under extreme reaction conditions. Bioorg. Chem. 2021, 114, 105036. [Google Scholar] [CrossRef]
- Xu, C.; Tong, S.; Sun, L.; Gu, X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr. Polym. 2023, 321, 121319. [Google Scholar] [CrossRef]
- Mylkie, K.; Nowak, P.; Rybczynski, P.; Ziegler-Borowska, M. Polymer-coated magnetite nanoparticles for protein immobilization. Materials 2021, 14, 248. [Google Scholar] [CrossRef]
- Alvarado-Ramírez, L.; Rostro-Alanis, M.; Rodríguez-Rodríguez, J.; Castillo-Zacarías, C.; Sosa-Hernández, J.E.; Barceló, D.; Iqbal, H.M.; Parra-Saldívar, R. Exploring current tendencies in techniques and materials for immobilization of laccases–A review. Int. J. Biol. Macromol. 2021, 181, 683–696. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. J. Mater. Chem. A 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Bell, D.J.; Wiese, M.; Schönberger, A.A.; Wessling, M. Catalytically Active Hollow Fiber Membranes with Enzyme-Embedded Metal–Organic Framework Coating. Angew. Chem. 2020, 132, 16181–16187. [Google Scholar] [CrossRef]
- Jabeen, R.; Ali, N.; Tajwar, M.A.; Liu, Y.; Luo, D.; Li, D.; Qi, L. Encapsulation of an enzyme-immobilized smart polymer membrane in a metal–organic framework for enhancement of catalytic performance. J. Mater. Chem. B 2024, 12, 3996–4003. [Google Scholar] [CrossRef] [PubMed]
- Poorakbar, E.; Shafiee, A.; Saboury, A.A.; Rad, B.L.; Khoshnevisan, K.; Ma’mani, L.; Derakhshankhah, H.; Ganjali, M.R.; Hosseini, M. Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: Improvement of enzymatic activity and thermal stability. Process Biochem. 2018, 71, 92–100. [Google Scholar] [CrossRef]
- Ahmed, I.N.; Yang, X.-L.; Dubale, A.A.; Li, R.-F.; Ma, Y.-M.; Wang, L.-M.; Hou, G.-H.; Guan, R.-F.; Xie, M.-H. Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Bioresour. Technol. 2018, 270, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.-J.; Lee, W.; Oh, Y.-S.; Lee, J.-K. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J. Chem. 2003, 27, 227–229. [Google Scholar] [CrossRef]
- Oke, M.; Ojo, S.; Fasiku, S.; Adebayo, E. Nanotechnology and enzyme immobilization: A review. Nanotechnology 2023, 34, 385101. [Google Scholar] [CrossRef]
- Ni, Q.; Chen, B.; Dong, S.; Tian, L.; Bai, Q. Preparation of core–shell structure Fe3O4@ SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for his-tag protein purification. Biomed. Chromatogr. 2016, 30, 566–573. [Google Scholar] [CrossRef]
- Zanuso, E.; Ruiz, H.A.; Domingues, L.; Teixeira, J.A. Magnetic nanoparticles as support for cellulase immobilization strategy for enzymatic hydrolysis using hydrothermally pretreated corn cob biomass. BioEnergy Res. 2022, 15, 1946–1957. [Google Scholar] [CrossRef]
- Dadwal, A.; Sharma, S.; Satyanarayana, T. Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int. J. Biol. Macromol. 2021, 188, 226–244. [Google Scholar] [CrossRef]
- Paz-Cedeno, F.R.; Carceller, J.M.; Iborra, S.; Donato, R.K.; Godoy, A.P.; de Paula, A.V.; Monti, R.; Corma, A.; Masarin, F. Magnetic graphene oxide as a platform for the immobilization of cellulases and xylanases: Ultrastructural characterization and assessment of lignocellulosic biomass hydrolysis. Renew. Energy 2021, 164, 491–501. [Google Scholar] [CrossRef]
- Almajanni, Y.; Amiri, H.; Taheri-Kafrani, A. Efficient and cost-effective biodegradation of phenolic compounds in lignocellulosic biomasses using laccase immobilized onto magnetically recoverable nanocellulose-functionalized iron-oxide nanoparticles. Ind. Crops Prod. 2025, 223, 120256. [Google Scholar] [CrossRef]
- Herman, R.A.; Zhu, X.; Ayepa, E.; Khurshid, M.; Zhang, Z.-P.; You, S.; Qian, J.-F.; Wang, J. Magnetic Janus SiO2 nanoparticles immobilized protease mutant T70I as a novel clarification agent for juice processing. Int. J. Biol. Macromol. 2025, 292, 139327. [Google Scholar] [CrossRef] [PubMed]
- Hadadi, M.; Habibi, A. Improved activity and stability of cellulase by immobilization on Fe3O4 nanoparticles functionalized with Reactive Red 120. Int. J. Biol. Macromol. 2025, 295, 139624. [Google Scholar] [CrossRef] [PubMed]
- Darwesh, O.M.; Ali, S.S.; Matter, I.A.; Elsamahy, T.; Mahmoud, Y.A. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 630, pp. 481–502. [Google Scholar]
- Cavalcante, A.L.G.; Dari, D.N.; da Silva Aires, F.I.; de Castro, E.C.; Dos Santos, K.M.; Dos Santos, J.C.S. Advancements in enzyme immobilization on magnetic nanomaterials: Toward sustainable industrial applications. RSC Adv. 2024, 14, 17946–17988. [Google Scholar] [CrossRef]
- Akpinar, I.; Wang, X.; Fahy, K.; Sha, F.; Yang, S.; Kwon, T.-w.; Das, P.J.; Islamoglu, T.; Farha, O.K.; Stoddart, J.F. Biomimetic Mineralization of Large Enzymes Utilizing a Stable Zirconium-Based Metal-Organic Frameworks. J. Am. Chem. Soc. 2024, 146, 5108–5117. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, R.; Yang, M.; Zheng, Y.; Zhang, Z.; Chen, Y. A Dynamic Defect Generation Strategy for Efficient Enzyme Immobilization in Robust Metal-Organic Frameworks for Catalytic Hydrolysis and Chiral Resolution. Angew. Chem. Int. Ed. 2023, 62, e202302436. [Google Scholar] [CrossRef]
- Chen, M.; Huang, Y.; Wang, Y.; Pang, Y.; Lou, H.; Li, Z.; Yang, D.; Qiu, X. Facile Construction of Stable Hierarchical Porous Metal–Organic Frameworks for In Situ Immobilization of β-Glucosidase Based on Competitive Coordination and Selective Etching Strategies. ACS Sustain. Chem. Eng. 2024, 12, 6728–6737. [Google Scholar] [CrossRef]
- Xu, L.; Liu, H.; Wang, X.; Li, Q.; Xu, S.; Sun, C.; Suo, H. Encapsulation of Immobilized β-Glucosidase with Calcium Metal–Organic Frameworks for Enhanced Stability in Hydrolysis of Cellobiose. Langmuir 2024, 40, 18727–18735. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Song, J.; Zhang, Y.; Nian, B.; Hu, Y. Spacer arm of ionic liquids facilitated laccase immobilization on magnetic graphene enhancing its stability and catalytic performance. Chemosphere 2024, 362, 142735. [Google Scholar] [CrossRef]
- Bilal, M.; Nguyen, T.A.; Iqbal, H.M. Multifunctional carbon nanotubes and their derived nano-constructs for enzyme immobilization–a paradigm shift in biocatalyst design. Coord. Chem. Rev. 2020, 422, 213475. [Google Scholar] [CrossRef]
- Kumari, A.; Rajeev, R.; Benny, L.; Sudhakar, Y.; Varghese, A.; Hegde, G. Recent advances in carbon nanotubes-based biocatalysts and their applications. Adv. Colloid Interface Sci. 2021, 297, 102542. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Noruzi, E.B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Gorab, M.G.; Hashemi, S.M.; Javanshir, S.; Cohan, R.A. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183. [Google Scholar] [CrossRef]
- Babadi, A.A.; Fakhlaei, R.; Rahmati, S.; Wang, S.; Basirun, W.J. A high-power hybrid carbon nanotube/three-dimensional reduced graphene oxide glucose/O2 enzymatic biofuel cell. Electrochim. Acta 2024, 506, 145054. [Google Scholar] [CrossRef]
- Zhang, W.; Singh, R.; Wang, Z.; Li, G.; Xie, Y.; Jha, R.; Marques, C.; Zhang, B.; Kumar, S. Humanoid shaped optical fiber plasmon biosensor functionalized with graphene oxide/multi-walled carbon nanotubes for histamine detection. Opt. Express 2023, 31, 11788–11803. [Google Scholar] [CrossRef] [PubMed]
- Aparna, G.; Tetala, K.K. Recent progress in development and application of DNA, protein, peptide, glycan, antibody, and aptamer microarrays. Biomolecules 2023, 13, 602. [Google Scholar] [CrossRef]
- Chen, B.; Wang, X.; Gao, X.; Jiang, J.; Hu, M.; Li, S.; Zhai, Q.; Jiang, Y. DNA directed immobilization of horseradish peroxidase on phase-transitioned lysozyme modified TiO2 for efficient degradation of phenol in wastewater. Mater. Des. 2021, 201, 109463. [Google Scholar] [CrossRef]
- Rashid, J.I.A.; Yusof, N.A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sens. Bio-Sens. Res. 2017, 16, 19–31. [Google Scholar] [CrossRef]
- Khan, S.; Burciu, B.; Filipe, C.D.; Li, Y.; Dellinger, K.; Didar, T.F. DNAzyme-based biosensors: Immobilization strategies, applications, and future prospective. ACS Nano 2021, 15, 13943–13969. [Google Scholar] [CrossRef]
- Huang, H.; Bai, W.; Dong, C.; Guo, R.; Liu, Z. An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens. Bioelectron. 2015, 68, 442–446. [Google Scholar] [CrossRef]
- Mostafavi, M.; Poor, M.B.; Habibi, Z.; Mohammadi, M.; Yousefi, M. Hyperactivation of lipases by immobilization on superhydrophobic graphene quantum dots inorganic hybrid nanoflower. Int. J. Biol. Macromol. 2024, 254, 127817. [Google Scholar] [CrossRef]
- Jamal, H.S.; Raja, R.; Ahmed, S.; Yesiloz, G.; Ali, S.A. Immobilization of collagenase in inorganic hybrid nanoflowers with enhanced stability, proteolytic activity, and their anti-amyloid potential. Int. J. Biol. Macromol. 2024, 274, 133114. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, X.; Kong, D.; Li, G.; Li, Q. Immobilization of thermophilic lipase in inorganic hybrid nanoflower through biomimetic mineralization. Colloids Surf. B Biointerfaces 2021, 197, 111450. [Google Scholar] [CrossRef] [PubMed]
- Badoei-Dalfard, A.; Monemi, F.; Hassanshahian, M. One-pot synthesis and biochemical characterization of a magnetic collagenase nanoflower and evaluation of its biotechnological applications. Colloids Surf. B Biointerfaces 2022, 211, 112302. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Appiah, B.; Zhang, B.-W.; Yang, Z.-H.; Quan, C. Recent advances in enzyme immobilization based on nanoflowers. J. Catal. 2023, 418, 31–39. [Google Scholar] [CrossRef]
- Yu, J.; Wang, C.; Wang, A.; Li, N.; Chen, X.; Pei, X.; Zhang, P.; Wu, S.G. Dual-cycle immobilization to reuse both enzyme and support by reblossoming enzyme–inorganic hybrid nanoflowers. RSC Adv. 2018, 8, 16088–16094. [Google Scholar] [CrossRef]
- Bosu, S.; Pooja, R.; Rajasimman, M. Role of nanomaterials in enhanced ethanol production through biological methods–review on operating factors and machine learning applications. Fuel 2022, 320, 123905. [Google Scholar] [CrossRef]
- Pérez-Hernández, H.; Pérez-Moreno, A.; Sarabia-Castillo, C.; García-Mayagoitia, S.; Medina-Pérez, G.; López-Valdez, F.; Campos-Montiel, R.; Jayanta-Kumar, P.; Fernández-Luqueño, F. Ecological drawbacks of nanomaterials produced on an industrial scale: Collateral effect on human and environmental health. Water Air Soil Pollut. 2021, 232, 435. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Zhu, Z.; Cui, C.; Bai, Y.; Gao, J.; Jiang, Y.; Li, B.; Wang, Y.; Zhang, Q.; Qian, W.; Wei, F. Advances in precise structure control and assembly toward the carbon nanotube industry. Adv. Funct. Mater. 2022, 32, 2109401. [Google Scholar] [CrossRef]
- Liu, J.; Lu, J.; Lin, X.; Tang, Y.; Liu, Y.; Wang, T.; Zhu, H. The electronic properties of chiral carbon nanotubes. Comput. Mater. Sci. 2017, 129, 290–294. [Google Scholar] [CrossRef]
- Liu, X.; Meng, H. Consideration for the scale-up manufacture of nanotherapeutics—A critical step for technology transfer. View 2021, 2, 20200190. [Google Scholar] [CrossRef]
- Mubeen, B.; Hasnain, A.; Wang, J.; Zheng, H.; Naqvi, S.A.H.; Prasad, R.; Rehman, A.u.; Sohail, M.A.; Hassan, M.Z.; Farhan, M. Current progress and open challenges for combined toxic effects of manufactured nano-sized objects (MNO’s) on soil biota and microbial community. Coatings 2023, 13, 212. [Google Scholar] [CrossRef]
- Gupta Ramesh, C. Veterinary Toxicology: Basic and Clinical Principles; Academic Press/Elsevier: San Diego, CA, USA, 2018. [Google Scholar]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.J.; Ahamed, M.; Kumar, S.; Siddiqui, H.; Patil, G.; Ashquin, M.; Ahmad, I. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 2010, 276, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.-Y.; Hu, Y.-L.; Gao, J.-Q. Brain localization and neurotoxicity evaluation of polysorbate 80-modified chitosan nanoparticles in rats. PLoS ONE 2015, 10, e0134722. [Google Scholar] [CrossRef]
- Vallhov, H.; Qin, J.; Johansson, S.M.; Ahlborg, N.; Muhammed, M.A.; Scheynius, A.; Gabrielsson, S. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 2006, 6, 1682–1686. [Google Scholar] [CrossRef]
- Strużyńska, L.; Skalska, J. Mechanisms underlying neurotoxicity of silver nanoparticles. In Cellular and Molecular Toxicology of Nanoparticles; Springer: Berlin/Heidelberg, Germany, 2018; pp. 227–250. [Google Scholar]
- Adegboyega, N.F.; Sharma, V.K.; Siskova, K.M.; Vecerova, R.; Kolar, M.; Zboril, R.; Gardea-Torresdey, J.L. Enhanced formation of silver nanoparticles in Ag+-NOM-iron (II, III) systems and antibacterial activity studies. Environ. Sci. Technol. 2014, 48, 3228–3235. [Google Scholar] [CrossRef]
- Rezaei Cherati, S.; Anas, M.; Liu, S.; Shanmugam, S.; Pandey, K.; Angtuaco, S.; Shelton, R.; Khalfaoui, A.N.; Alena, S.V.; Porter, E. Comprehensive risk assessment of carbon nanotubes used for agricultural applications. ACS Nano 2022, 16, 12061–12072. [Google Scholar] [CrossRef]
- Bahrulolum, H.; Nooraei, S.; Javanshir, N.; Tarrahimofrad, H.; Mirbagheri, V.S.; Easton, A.J.; Ahmadian, G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 2021, 19, 86. [Google Scholar] [CrossRef]
- Velidandi, A.; Pabbathi, N.P.P.; Dahariya, S.; Baadhe, R.R. Green synthesis of novel Ag–Cu and Ag–Znbimetallic nanoparticles and their in vitro biological, eco-toxicity and catalytic studies. Nano-Struct. Nano-Objects 2021, 26, 100687. [Google Scholar] [CrossRef]
- Saleh, T.A.; Fadillah, G. Green synthesis protocols, toxicity, and recent progress in nanomaterial-based for environmental chemical sensors applications. Trends Environ. Anal. Chem. 2023, 39, e00204. [Google Scholar] [CrossRef]
- Sabeena, G.; Rajaduraipandian, S.; Pushpalakshmi, E.; Alhadlaq, H.A.; Mohan, R.; Annadurai, G.; Ahamed, M. Green and chemical synthesis of CuO nanoparticles: A comparative study for several in vitro bioactivities and in vivo toxicity in zebrafish embryos. J. King Saud Univ.-Sci. 2022, 34, 102092. [Google Scholar]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Miyazaki, M. Enzyme-immobilized microfluidic devices for biomolecule detection. TrAC Trends Anal. Chem. 2023, 159, 116908. [Google Scholar] [CrossRef]
- Enck, K.; Rajan, S.P.; Aleman, J.; Castagno, S.; Long, E.; Khalil, F.; Hall, A.R.; Opara, E.C. Design of an adhesive film-based microfluidic device for alginate hydrogel-based cell encapsulation. Ann. Biomed. Eng. 2020, 48, 1103–1111. [Google Scholar] [CrossRef]
- Elvira, K.S.; i Solvas, X.C.; Wootton, R.C.; Demello, A.J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915. [Google Scholar] [CrossRef]
- Jeong, H.-H.; Issadore, D.; Lee, D. Recent developments in scale-up of microfluidic emulsion generation via parallelization. Korean J. Chem. Eng. 2016, 33, 1757–1766. [Google Scholar] [CrossRef]
- Tabeling, P. Introduction to Microfluidics; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Nagy, C.; Szabo, R.; Gaspar, A. Microfluidic immobilized enzymatic reactors for proteomic analyses—Recent developments and trends (2017–2021). Micromachines 2022, 13, 311. [Google Scholar] [CrossRef]
- Lloret, L.; Eibes, G.; Moreira, M.; Feijoo, G.; Lema, J.; Miyazaki, M. Improving the catalytic performance of laccase using a novel continuous-flow microreactor. Chem. Eng. J. 2013, 223, 497–506. [Google Scholar] [CrossRef]
- Honda, T.; Miyazaki, M.; Yamaguchi, Y.; Nakamura, H.; Maeda, H. Integrated microreaction system for optical resolution of racemic amino acids. Lab A Chip 2007, 7, 366–372. [Google Scholar] [CrossRef]
- Rahman, M.M.; Asiri, A.M. One-step electrochemical detection of cholesterol in the presence of suitable K3Fe (CN) 6/phosphate buffer mediator by an electrochemical approach. Talanta 2015, 140, 96–101. [Google Scholar] [CrossRef]
- Xuan, X.; Perez-Rafols, C.; Chen, C.; Cuartero, M.; Crespo, G.A. Lactate biosensing for reliable on-body sweat analysis. ACS Sens. 2021, 6, 2763–2771. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.-G.; Pishko, M. Immobilization of multi-enzyme microreactors inside microfluidic devices. Sens. Actuators B Chem. 2005, 106, 335–342. [Google Scholar] [CrossRef]
- Chou, J.-C.; Wu, C.-Y.; Lin, S.-H.; Kuo, P.-Y.; Lai, C.-H.; Nien, Y.-H.; Wu, Y.-X.; Lai, T.-Y. The analysis of the urea biosensors using different sensing matrices via wireless measurement system & microfluidic measurement system. Sensors 2019, 19, 3004. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zhang, T.; Zheng, Z.; Jing, H.; Liu, C. Improving pesticide residue detection: Immobilized enzyme microreactor embedded in microfluidic paper-based analytical devices. Food Chem. 2024, 439, 138179. [Google Scholar] [CrossRef] [PubMed]
- Peñaranda, P.A.; Noguera, M.J.; Florez, S.L.; Husserl, J.; Ornelas-Soto, N.; Cruz, J.C.; Osma, J.F. Treatment of wastewater, phenols and dyes using novel magnetic torus microreactors and laccase immobilized on magnetite nanoparticles. Nanomaterials 2022, 12, 1688. [Google Scholar] [CrossRef]
- Sotelo, L.D.; Sotelo, D.C.; Ornelas-Soto, N.; Cruz, J.C.; Osma, J.F. Comparison of acetaminophen degradation by laccases immobilized by two different methods via a continuous flow microreactor process scheme. Membranes 2022, 12, 298. [Google Scholar] [CrossRef]
- Singh, N.; Agarwal, S.; Jain, A.; Khan, S. 3-Dimensional cross linked hydrophilic polymeric network “hydrogels”: An agriculture boom. Agric. Water Manag. 2021, 253, 106939. [Google Scholar] [CrossRef]
- Meyer, J.; Meyer, L.E.; Kara, S. Enzyme immobilization in hydrogels: A perfect liaison for efficient and sustainable biocatalysis. Eng. Life Sci. 2022, 22, 165–177. [Google Scholar] [CrossRef]
- Krishna, B.L.; Singh, A.N.; Patra, S.; Dubey, V.K. Purification, characterization and immobilization of urease from Momordica charantia seeds. Process Biochem. 2011, 46, 1486–1491. [Google Scholar] [CrossRef]
- Jeong, K.-H.; Park, D.; Lee, Y.-C. Polymer-based hydrogel scaffolds for skin tissue engineering applications: A mini-review. J. Polym. Res. 2017, 24, 112. [Google Scholar] [CrossRef]
- Shakeri, F.; Ariaeenejad, S.; Ghollasi, M.; Motamedi, E. Synthesis of two novel bio-based hydrogels using sodium alginate and chitosan and their proficiency in physical immobilization of enzymes. Sci. Rep. 2022, 12, 2072. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int. J. Biol. Macromol. 2019, 124, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Horn, C.; Pospiech, D.; Allertz, P.J.; Müller, M.; Salchert, K.; Hommel, R. Chemical design of hydrogels with immobilized laccase for the reduction of persistent trace compounds in wastewater. ACS Appl. Polym. Mater. 2021, 3, 2823–2834. [Google Scholar] [CrossRef]
- Dwamena, A.K.; Woo, S.H.; Kim, C.S. Enzyme immobilization on porous chitosan hydrogel capsules formed by anionic surfactant gelation. Biotechnol. Lett. 2020, 42, 845–852. [Google Scholar] [CrossRef]
- Crulhas, B.P.; Recco, L.C.; Delella, F.K.; Pedrosa, V.A. A novel superoxide anion biosensor for monitoring reactive species of oxygen released by cancer cells. Electroanalysis 2017, 29, 1252–1257. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Jayachandran, B.; Parvin, T.N.; Alam, M.M.; Chanda, K.; Mm, B. Insights on chemical crosslinking strategies for proteins. Molecules 2022, 27, 8124. [Google Scholar] [CrossRef]
- Ariaeenejad, S.; Lanjanian, H.; Motamedi, E.; Kavousi, K.; Moosavi-Movahedi, A.A.; Hosseini Salekdeh, G. The stabilizing mechanism of immobilized metagenomic xylanases on bio-based hydrogels to improve utilization performance: Computational and functional perspectives. Bioconjugate Chem. 2020, 31, 2158–2171. [Google Scholar] [CrossRef]
- Kim, H.J.; Jin, J.N.; Kan, E.; Kim, K.J.; Lee, S.H. Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol. Bioprocess Eng. 2017, 22, 89–94. [Google Scholar] [CrossRef]
- Mohammadi, N.S.; Khiabani, M.S.; Ghanbarzadeh, B.; Mokarram, R.R. Enhancement of biochemical aspects of lipase adsorbed on halloysite nanotubes and entrapped in a polyvinyl alcohol/alginate hydrogel: Strategies to reuse the most stable lipase. World J. Microbiol. Biotechnol. 2020, 36, 45. [Google Scholar] [CrossRef]
- Zhu, J.-Q.; Xu, J.-N.; Bian, X.-R.; Cheng, P.; Dou, Z.; Dai, W.-T.; Ju, S.-Y.; Wang, Y.-J. Enhancing the stability and activity of enzymes through layer-by-layer immobilization with nanocomposite hydrogel. Biochem. Eng. J. 2025, 215, 109604. [Google Scholar] [CrossRef]
- Dhiman, S.; Srivastava, B.; Singh, G.; Khatri, M.; Arya, S.K. Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin: An easy and cost effective approach for the improvement of enzyme properties. Int. J. Biol. Macromol. 2020, 156, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Öztop, H.N.; Akyildiz, F.; Saraydin, D. Poly (acrylamide/vinylsulfonic acid) hydrogel for invertase immobilization. Microsc. Res. Tech. 2020, 83, 1487–1498. [Google Scholar] [CrossRef] [PubMed]
- Ariaeenejad, S.; Motamedi, E.; Salekdeh, G.H. Stable cellulase immobilized on graphene oxide@ CMC-g-poly (AMPS-co-AAm) hydrogel for enhanced enzymatic hydrolysis of lignocellulosic biomass. Carbohydr. Polym. 2020, 230, 115661. [Google Scholar] [CrossRef]
- Motamedi, E.; Sadeghian Motahar, S.F.; Maleki, M.; Kavousi, K.; Ariaeenejad, S.; Moosavi-Movahedi, A.A.; Hosseini Salekdeh, G. Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel. Cellulose 2021, 28, 3485–3503. [Google Scholar] [CrossRef]
- Kapoor, S.; Rafiq, A.; Sharma, S. Protein engineering and its applications in food industry. Crit. Rev. Food Sci. Nutr. 2017, 57, 2321–2329. [Google Scholar] [CrossRef]
- Pandey, C.; Sharma, P.; Gupta, N. Engineering to enhance thermostability of xylanase: For the new era of biotechnology. J. Appl. Biol. Biotechnol. 2023, 11, 41–54. [Google Scholar] [CrossRef]
- Albayati, S.H.; Nezhad, N.G.; Taki, A.G.; Abd Rahman, R.N.Z.R. Efficient and feasible biocatalysts: Strategies for enzyme improvement. A review. Int. J. Biol. Macromol. 2024, 276, 133978. [Google Scholar] [CrossRef]
- De Simone, M.; Alonso-Cotchico, L.; Lucas, M.F.; Brissos, V.; Martins, L.O. Distal mutations enhance efficiency of free and immobilized NOV1 dioxygenase for vanillin synthesis. J. Biotechnol. 2024, 391, 92–98. [Google Scholar] [CrossRef]
- Wang, A.; Du, F.; Pei, X.; Chen, C.; Wu, S.G.; Zheng, Y. Rational immobilization of lipase by combining the structure analysis and unnatural amino acid insertion. J. Mol. Catal. B Enzym. 2016, 132, 54–60. [Google Scholar] [CrossRef]
- Czarnievicz, N.; Iturralde, M.; Comino, N.; Skolimowski, M.; López-Gallego, F. Surface engineering of amine transaminases to control their region-selective immobilization. Int. J. Biol. Macromol. 2025, 290, 138776. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Xu, M.; Guo, B.; Luo, B.; Shao, X.; Wang, Y.; Cao, Y.; Zhang, D.; Ban, X.; Wei, L. Site-Directed Immobilization of An Engineered Cytidine Deaminase on a Magnetic Carrier with Bacteriophage-Aided Nanosurface for Multiround Biocatalysis. ACS Sustain. Chem. Eng. 2024, 12, 13438–13451. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, X.; Liu, W.-Q.; Ling, S.; Li, J. Chitin-Functionalized Cell-Free System Enables Sustainable Biocatalysis and Gene Expression. ACS Sustain. Chem. Eng. 2024, 12, 18219–18230. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, X.; Xu, Y.; Wu, J. Thermostability Enhancement of Tagatose 4-Epimerase through Protein Engineering and Whole-Cell Immobilization. J. Agric. Food Chem. 2025, 73, 1449–1457. [Google Scholar] [CrossRef]
- Gihaz, S.; Weiser, D.; Dror, A.; Sátorhelyi, P.; Jerabek-Willemsen, M.; Poppe, L.; Fishman, A. Creating an Efficient Methanol-Stable Biocatalyst by Protein and Immobilization Engineering Steps towards Efficient Biosynthesis of Biodiesel. ChemSusChem 2016, 9, 3161–3170. [Google Scholar] [CrossRef]
- Shukla, M.; Maiya, D.; Patel, T.; Pandya, A.; Tripathi, S. Nanozyme-Mediated Biosensing: An Insight into the Mechanisms Employed for the Continuous Analyte Monitoring. In Biosensors for Personalized Healthcare; Springer: Berlin/Heidelberg, Germany, 2024; pp. 253–278. [Google Scholar]
- Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Jamwal, S.; Ranote, S.; Dautoo, U.; Chauhan, G.S. Improving activity and stabilization of urease by crosslinking to nanoaggregate forms for herbicide degradation. Int. J. Biol. Macromol. 2020, 158, 521–529. [Google Scholar] [CrossRef]
- Sheldon, R. Cross-linked enzyme aggregates (CLEA® s): Stable and recyclable biocatalysts. Biochem. Soc. Trans. 2007, 35, 1583–1587. [Google Scholar] [CrossRef]
- Zerva, A.; Antonopoulou, I.; Enman, J.; Iancu, L.; Jütten, P.; Rova, U.; Christakopoulos, P. Optimization of transesterification reactions with CLEA-immobilized feruloyl esterases from Thermothelomyces thermophila and Talaromyces wortmannii. Molecules 2018, 23, 2403. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, L.; Liu, Y.; Zhang, X.; Yan, Y. Lipase-coated K2SO4 micro-crystals: Preparation, characterization, and application in biodiesel production using various oil feedstocks. Bioresour. Technol. 2012, 110, 224–231. [Google Scholar] [CrossRef]
- Xia, J.; Yan, Y.; Zou, B.; Liu, F. Improved catalytic performance of carrier-free immobilized lipase by advanced cross-linked enzyme aggregates technology. Bioprocess Biosyst. Eng. 2022, 45, 147–158. [Google Scholar]
- Matijošytė, I.; Arends, I.W.; de Vries, S.; Sheldon, R.A. Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. J. Mol. Catal. B Enzym. 2010, 62, 142–148. [Google Scholar] [CrossRef]
- Danielli, C.; van Langen, L.; Boes, D.; Asaro, F.; Anselmi, S.; Provenza, F.; Renzi, M.; Gardossi, L. 2, 5-Furandicarboxaldehyde as a bio-based crosslinking agent replacing glutaraldehyde for covalent enzyme immobilization. RSC Adv. 2022, 12, 35676–35684. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Xiong, X.; Qiu, M.; Lu, Y.; Chen, T.; Xu, Z. Hyperbranched Polymer-Crosslinked Laccase Aggregates for Efficient Aerobic Oxidation of Alcohols. Enzym. Microb. Technol. 2025, 189, 110673. [Google Scholar] [CrossRef]
- Yang, K.-L. Uniform cross-linked cellulase aggregates prepared in millifluidic reactors. J. Colloid Interface Sci. 2014, 428, 146–151. [Google Scholar]
- Wang, M.; Jia, C.; Qi, W.; Yu, Q.; Peng, X.; Su, R.; He, Z. Porous-CLEAs of papain: Application to enzymatic hydrolysis of macromolecules. Bioresour. Technol. 2011, 102, 3541–3545. [Google Scholar] [CrossRef]
- Goldberg, D.M.; Deane, J.K.; Rakes, T.R.; Rees, L.P. 3D printing technology and the market value of the firm. Inf. Syst. Front. 2022, 24, 1379–1392. [Google Scholar] [CrossRef]
- Liu, W.; Wu, N.; Pochiraju, K. Shape recovery characteristics of SiC/C/PLA composite filaments and 3D printed parts. Compos. Part A Appl. Sci. Manuf. 2018, 108, 1–11. [Google Scholar] [CrossRef]
- Pose-Boirazian, T.; Martínez-Costas, J.; Eibes, G. 3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromol. Biosci. 2022, 22, 2200110. [Google Scholar] [CrossRef]
- Shao, Y.; Liao, Z.; Gao, B.; He, B. Emerging 3D printing strategies for enzyme immobilization: Materials, methods, and applications. ACS Omega 2022, 7, 11530–11543. [Google Scholar] [CrossRef]
- Gonzalez, G.; Roppolo, I.; Pirri, C.F.; Chiappone, A. Current and emerging trends in polymeric 3D printed microfluidic devices. Addit. Manuf. 2022, 55, 102867. [Google Scholar] [CrossRef]
- Lackner, F.; Liu, H.; Štiglic, A.D.; Bračič, M.; Kargl, R.; Nidetzky, B.; Mohan, T.; Kleinschek, K.S. 3D printed porous nanocellulose-based scaffolds as carriers for immobilization of glycosyltransferases. ACS Appl. Bio Mater. 2022, 5, 5728–5740. [Google Scholar] [CrossRef]
- Ye, J.; Chu, T.; Chu, J.; Gao, B.; He, B. A versatile approach for enzyme immobilization using chemically modified 3D-printed scaffolds. ACS Sustain. Chem. Eng. 2019, 7, 18048–18054. [Google Scholar] [CrossRef]
- Jiang, W.; Pei, R.; Zhou, S.-F. 3D-printed xylanase within biocompatible polymers as excellent catalyst for lignocellulose degradation. Chem. Eng. J. 2020, 400, 125920. [Google Scholar] [CrossRef]
- Xu, X.; Pose-Boirazian, T.; Eibes, G.; McCoubrey, L.E.; Martínez-Costas, J.; Gaisford, S.; Goyanes, A.; Basit, A.W. A customizable 3D printed device for enzymatic removal of drugs in water. Water Res. 2022, 208, 117861. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Q.; Luo, X.; Yang, L.; Cui, Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst. Nanoeng. 2021, 7, 75. [Google Scholar] [CrossRef]
- Manzanares-Palenzuela, C.L.; Hermanova, S.; Sofer, Z.; Pumera, M. Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: Towards enzymatic modeling of 3D-printed structures. Nanoscale 2019, 11, 12124–12131. [Google Scholar] [CrossRef]
- Schmieg, B.; Schimek, A.; Franzreb, M. Development and performance of a 3D-printable poly (ethylene glycol) diacrylate hydrogel suitable for enzyme entrapment and long-term biocatalytic applications. Eng. Life Sci. 2018, 18, 659–667. [Google Scholar] [CrossRef]
- Liu, J.; Shen, X.; Zheng, Z.; Li, M.; Zhu, X.; Cao, H.; Cui, C. Immobilization of laccase by 3D bioprinting and its application in the biodegradation of phenolic compounds. Int. J. Biol. Macromol. 2020, 164, 518–525. [Google Scholar] [CrossRef]
- Ali, J.M.; Hussain, M.A.; Tade, M.O.; Zhang, J. Artificial Intelligence techniques applied as estimator in chemical process systems–A literature survey. Expert Syst. Appl. 2015, 42, 5915–5931. [Google Scholar]
- Gulati, S.; Rouilly, V.; Niu, X.; Chappell, J.; Kitney, R.I.; Edel, J.B.; Freemont, P.S.; Demello, A.J. Opportunities for microfluidic technologies in synthetic biology. J. R. Soc. Interface 2009, 6 (Suppl. S4), S493–S506. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, M.; Saxena, S.K.; Kumar, R. Raman Spectromicroscopy: A tool to “see” subtle aspects in science, technology, and engineering. J. Phys. Chem. C 2022, 126, 4733–4743. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Guo, S.; Bocklitz, T.; Rösch, P.; Popp, J.; Yu, H.-Q. Nondestructive 3D imaging and quantification of hydrated biofilm matrix by confocal Raman microscopy coupled with non-negative matrix factorization. Water Res. 2022, 210, 117973. [Google Scholar] [CrossRef]
- Smith, J.P.; Liu, M.; Lauro, M.L.; Balasubramanian, M.; Forstater, J.H.; Grosser, S.T.; Dance, Z.E.; Rhodes, T.A.; Bu, X.; Booksh, K.S. Raman hyperspectral imaging with multivariate analysis for investigating enzyme immobilization. Analyst 2020, 145, 7571–7581. [Google Scholar] [CrossRef]
- Patil, P.D.; Gargate, N.; Dongarsane, K.; Jagtap, H.; Phirke, A.N.; Tiwari, M.S.; Nadar, S.S. Revolutionizing biocatalysis: A review on innovative design and applications of enzyme-immobilized microfluidic devices. Int. J. Biol. Macromol. 2024, 281, 136193. [Google Scholar] [CrossRef]
- Mazurenko, S. Predicting protein stability and solubility changes upon mutations: Data perspective. ChemCatChem 2020, 12, 5590–5598. [Google Scholar] [CrossRef]
- Chai, M.; Moradi, S.; Erfani, E.; Asadnia, M.; Chen, V.; Razmjou, A. Application of machine learning algorithms to estimate enzyme loading, immobilization yield, activity retention, and reusability of enzyme–metal–organic framework biocatalysts. Chem. Mater. 2021, 33, 8666–8676. [Google Scholar] [CrossRef]
- Ralbovsky, N.M.; Smith, J.P. Machine learning for prediction, classification, and identification of immobilized enzymes for biocatalysis. Pharm. Res. 2023, 40, 1479–1490. [Google Scholar] [CrossRef]
- Wei, H.; Smith, J.P. Modernized machine learning approach to illuminate enzyme immobilization for biocatalysis. ACS Cent. Sci. 2023, 9, 1913–1926. [Google Scholar] [CrossRef]
- Panteleev, J.; Gao, H.; Jia, L. Recent applications of machine learning in medicinal chemistry. Bioorg. Med. Chem. Lett. 2018, 28, 2807–2815. [Google Scholar] [CrossRef] [PubMed]
- Askari, H.; Ghaedi, M.; Dashtian, K.; Azghandi, M.H.A. Rapid and high-capacity ultrasonic assisted adsorption of ternary toxic anionic dyes onto MOF-5-activated carbon: Artificial neural networks, partial least squares, desirability function and isotherm and kinetic study. Ultrason. Sonochem. 2017, 37, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Parsazadeh, N.; Yousefi, F.; Ghaedi, M.; Dashtian, K.; Borousan, F. Preparation and characterization of monoliths HKUST-1 MOF via straightforward conversion of Cu(OH)2-based monoliths and its application for wastewater treatment: Artificial neural network and central composite design modeling. New J. Chem. 2018, 42, 10327–10336. [Google Scholar] [CrossRef]
- Ohno, H.; Mukae, Y. Machine learning approach for prediction and search: Application to methane storage in a metal–organic framework. J. Phys. Chem. C 2016, 120, 23963–23968. [Google Scholar] [CrossRef]
- Borboudakis, G.; Stergiannakos, T.; Frysali, M.; Klontzas, E.; Tsamardinos, I.; Froudakis, G.E. Chemically intuited, large-scale screening of MOFs by machine learning techniques. npj Comput. Mater. 2017, 3, 40. [Google Scholar] [CrossRef]
- Dixit, M.; Gupta, G.K.; Yadav, M.; Chhabra, D.; Kapoor, R.K.; Pathak, P.; Bhardwaj, N.K.; Shukla, P. Improved deinking and biobleaching efficiency of enzyme consortium from Thermomyces lanuginosus VAPS25 using genetic Algorithm-Artificial neural network based tools. Bioresour. Technol. 2022, 349, 126846. [Google Scholar] [CrossRef]
- Dixit, M.; Chhabra, D.; Shukla, P. Optimization of endoglucanase-lipase-amylase enzyme consortium from Thermomyces lanuginosus VAPS25 using Multi-Objective genetic algorithm and their bio-deinking applications. Bioresour. Technol. 2023, 370, 128467. [Google Scholar] [CrossRef]
- Fard Masoumi, H.R.; Basri, M.; Kassim, A.; Kuang Abdullah, D.; Abdollahi, Y.; Abd Gani, S.S. Comparison of estimation capabilities of the artificial neural network with the wavelet neural network in lipase-catalyzed synthesis of triethanolamine-based esterquats cationic surfactant. J. Surfactants Deterg. 2014, 17, 287–294. [Google Scholar] [CrossRef]
- Liang, W.; Zheng, S.; Shu, Y.; Huang, J. Machine Learning Optimizing Enzyme/ZIF Biocomposites for Enhanced Encapsulation Efficiency and Bioactivity. JACS Au 2024, 4, 3170–3182. [Google Scholar] [CrossRef]
- de Souza, T.C.; de Sousa Fonseca, T.; de Sousa Silva, J.; Lima, P.J.; Neto, C.A.; Monteiro, R.R.; Rocha, M.V.P.; de Mattos, M.C.; Dos Santos, J.C.; Gonçalves, L.R. Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess Biosyst. Eng. 2020, 43, 2253–2268. [Google Scholar] [CrossRef]
- Rueda, N.; dos Santos, J.C.; Torres, R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Reactivation of lipases by the unfolding and refolding of covalently immobilized biocatalysts. RSC Adv. 2015, 5, 55588–55594. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadesse, M.; Liu, Y. Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems. Catalysts 2025, 15, 571. https://doi.org/10.3390/catal15060571
Tadesse M, Liu Y. Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems. Catalysts. 2025; 15(6):571. https://doi.org/10.3390/catal15060571
Chicago/Turabian StyleTadesse, Melesse, and Yun Liu. 2025. "Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems" Catalysts 15, no. 6: 571. https://doi.org/10.3390/catal15060571
APA StyleTadesse, M., & Liu, Y. (2025). Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems. Catalysts, 15(6), 571. https://doi.org/10.3390/catal15060571