Conversion of Furfural as a Bio-Oil Model Compound over Calcium-Based Materials as Sacrificial Low-Cost Catalysts for Bio-Oil Upgrading
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Catalyst
2.2. Conversion of Furfural
3. Materials and Methods
3.1. Materials and Preparation
3.2. Catalyst Characterization
3.3. Catalytic Activity Test and Product Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CRM | Cement raw meal |
cCRM | Calcined cement raw meal |
References
- IEA. Global Energy Review 2025; IEA: Paris, France, 2025; Available online: https://www.iea.org/reports/global-energy-review-2025 (accessed on 28 May 2025).
- United Nations Department of Economic and Social Affairs. Climate Review; Office of the Under-Secretary-General, United Nations: New York, NY, USA, 2021. [Google Scholar]
- Mortensen, P.M.; Grunwaldt, J.-D.; Jensen, P.A.; Knudsen, K.G.; Jensen, A.D. A Review of Catalytic Upgrading of Bio-Oil to Engine Fuels. Appl. Catal. A Gen. 2011, 407, 1–19. [Google Scholar] [CrossRef]
- Serrano, D.P.; Aguado, J.; Escola, J.M. Developing Advanced Catalysts for the Conversion of Polyolefinic Waste Plastics into Fuels and Chemicals. ACS Catal. 2012, 2, 1924–1941. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2020; IEA: Paris, France, 2020. [Google Scholar]
- Roy, P.; Dias, G. Prospects for Pyrolysis Technologies in the Bioenergy Sector: A Review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Kabir, G.; Hameed, B.H. Recent Progress on Catalytic Pyrolysis of Lignocellulosic Biomass to High-Grade Bio-Oil and Bio-Chemicals. Renew. Sustain. Energy Rev. 2017, 70, 945–967. [Google Scholar] [CrossRef]
- Dyer, A.C.; Nahil, M.A.; Williams, P.T. Catalytic Co-Pyrolysis of Biomass and Waste Plastics as a Route to Upgraded Bio-Oil. J. Energy Inst. 2021, 97, 27–36. [Google Scholar] [CrossRef]
- Muelas, Á.; Aranda, D.; Callén, M.S.; Murillo, R.; Veses, A.; Asrardel, M.; Ballester, J. Properties and Combustion Characteristics of Bio-Oils from Catalytic Co-Pyrolysis of Grape Seeds, Polystyrene, and Waste Tires. Energy Fuels 2020, 34, 14190–14203. [Google Scholar] [CrossRef]
- Eschenbacher, A.; Fennell, P.; Jensen, A.D. A Review of Recent Research on Catalytic Biomass Pyrolysis and Low-Pressure Hydropyrolysis. Energy Fuels 2021, 35, 18333–18369. [Google Scholar] [CrossRef]
- de Miguel Mercader, F.; Groeneveld, M.J.; Kersten, S.R.A.; Venderbosch, R.H.; Hogendoorn, J.A. Pyrolysis Oil Upgrading by High Pressure Thermal Treatment. Fuel 2010, 89, 2829–2837. [Google Scholar] [CrossRef]
- Yusuf, M.; Leeke, G.; Wood, J. Anisole Hydrodeoxygenation over Nickel-Based Catalysts: Influences of Solvent and Support Properties. Energy Fuels 2023, 37, 1225–1237. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Richard, C.J.; Liu, K.; Hellgardt, K.; Chadwick, D.; Shah, N. An Integrated Process for Biomass Pyrolysis Oil Upgrading: A Synergistic Approach. Biomass Bioenergy 2015, 76, 108–117. [Google Scholar] [CrossRef]
- Krutof, A.; Hawboldt, K.A. Upgrading of Biomass Sourced Pyrolysis Oil Review: Focus on Co-Pyrolysis and Vapour Upgrading during Pyrolysis. Biomass Convers. Biorefin 2018, 8, 775–787. [Google Scholar] [CrossRef]
- Bu, Q.; Cao, M.; Wang, M.; Zhang, X.; Mao, H. The Effect of Torrefaction and ZSM-5 Catalyst for Hydrocarbon Rich Bio-Oil Production from Co-Pyrolysis of Cellulose and Low Density Polyethylene via Microwave-Assisted Heating. Sci. Total Environ. 2021, 754, 142174. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulou, E.F.; Antonakou, E.V.; Karakoulia, S.A.; Vasalos, I.A.; Lappas, A.A.; Triantafyllidis, K.S. Catalytic Conversion of Biomass Pyrolysis Products by Mesoporous Materials: Effect of Steam Stability and Acidity of Al-MCM-41 Catalysts. Chem. Eng. J. 2007, 134, 51–57. [Google Scholar] [CrossRef]
- Stummann, M.Z.; Hansen, A.B.; Hansen, L.P.; Davidsen, B.; Rasmussen, S.B.; Wiwel, P.; Gabrielsen, J.; Jensen, P.A.; Jensen, A.D.; Høj, M. Catalytic Hydropyrolysis of Biomass Using Molybdenum Sulfide Based Catalyst. Effect of Promoters. Energy Fuels 2019, 33, 1302–1313. [Google Scholar] [CrossRef]
- Bui, V.N.; Laurenti, D.; Afanasiev, P.; Geantet, C. Hydrodeoxygenation of Guaiacol with CoMo Catalysts. Part I: Promoting Effect of Cobalt on HDO Selectivity and Activity. Appl. Catal. B 2011, 101, 239–245. [Google Scholar] [CrossRef]
- Ochoa, A.; Bilbao, J.; Gayubo, A.G.; Castaño, P. Coke Formation and Deactivation during Catalytic Reforming of Biomass and Waste Pyrolysis Products: A Review. Renew. Sustain. Energy Rev. 2020, 119, 109600. [Google Scholar] [CrossRef]
- Pawelec, B.; Loricera, C.V.; Geantet, C.; Mota, N.; Fierro, J.L.G.; Navarro, R.M. Factors Influencing Selectivity in the Liquid-Phase Phenol Hydrodeoxygenation over ZSM-5 Supported Pt/Ir and Pt+Ir Catalysts. Mol. Catal. 2020, 482, 110669. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Liu, C.; Lin, X.; Lu, Y.; Li, W.; Zheng, Z. Enhancing the Aromatic Hydrocarbon Yield from the Catalytic Copyrolysis of Xylan and LDPE with a Dual-Catalytic-Stage Combined CaO/HZSM-5 Catalyst. J. Energy Inst. 2020, 93, 1833–1847. [Google Scholar] [CrossRef]
- Stephanidis, S.; Nitsos, C.; Kalogiannis, K.; Iliopoulou, E.F.; Lappas, A.A.; Triantafyllidis, K.S. Catalytic Upgrading of Lignocellulosic Biomass Pyrolysis Vapours: Effect of Hydrothermal Pre-Treatment of Biomass. Catal. Today 2011, 167, 37–45. [Google Scholar] [CrossRef]
- Armbrüster, M.; Kovnir, K.; Friedrich, M.; Teschner, D.; Wowsnick, G.; Hahne, M.; Gille, P.; Szentmiklósi, L.; Feuerbacher, M.; Heggen, M.; et al. Al13Fe4 as a Low-Cost Alternative for Palladium in Heterogeneous Hydrogenation. Nat. Mater. 2012, 11, 690–693. [Google Scholar] [CrossRef]
- Fadillah, G.; Fatimah, I.; Sahroni, I.; Musawwa, M.M.; Mahlia, T.M.I.; Muraza, O. Recent Progress in Low-Cost Catalysts for Pyrolysis of Plastic Waste to Fuels. Catalysts 2021, 11, 837. [Google Scholar] [CrossRef]
- Veses, A.; Aznar, M.; López, J.M.; Callén, M.S.; Murillo, R.; García, T. Production of Upgraded Bio-Oils by Biomass Catalytic Pyrolysis in an Auger Reactor Using Low Cost Materials. Fuel 2015, 141, 17–22. [Google Scholar] [CrossRef]
- Veses, A.; Sanahuja-Parejo, O.; Navarro, M.V.; López, J.M.; Murillo, R.; Callén, M.S.; García, T. From Laboratory Scale to Pilot Plant: Evaluation of the Catalytic Co-Pyrolysis of Grape Seeds and Polystyrene Wastes with CaO. Catal. Today 2021, 379, 87–95. [Google Scholar] [CrossRef]
- Sanahuja-Parejo, O.; Veses, A.; López, J.M.; Murillo, R.; Callén, M.S.; García, T. Ca-Based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres. Catalysts 2019, 9, 992. [Google Scholar] [CrossRef]
- Veses, A.; Aznar, M.; Callén, M.S.; Murillo, R.; García, T. An Integrated Process for the Production of Lignocellulosic Biomass Pyrolysis Oils Using Calcined Limestone as a Heat Carrier with Catalytic Properties. Fuel 2016, 181, 430–437. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Chen, L.; Xie, X.; Zhao, B.; Si, H.; Meng, G. Comparison of Catalytic Upgrading of Biomass Fast Pyrolysis Vapors over CaO and Fe(III)/CaO Catalysts. J. Anal. Appl. Pyrolysis 2014, 108, 35–40. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Sun, S.; Wang, Z.; Cui, D. Effect of CaO on Pyrolysis Products and Reaction Mechanisms of a Corn Stover. ACS Omega 2020, 5, 10276–10287. [Google Scholar] [CrossRef]
- Chireshe, F.; Collard, F.-X.; Görgens, J.F. Production of an Upgraded Bio-Oil with Minimal Water Content by Catalytic Pyrolysis: Optimisation and Comparison of CaO and MgO Performances. J. Anal. Appl. Pyrolysis 2020, 146, 104751. [Google Scholar] [CrossRef]
- Tang, Y.; Dong, J.; Zhao, Y.; Li, G.; Chi, Y.; Weiss-Hortala, E.; Nzihou, A.; Luo, G.; Ye, C. Hydrogen-Rich and Clean Fuel Gas Production from Co-Pyrolysis of Biomass and Plastic Blends with CaO Additive. ACS Omega 2022, 7, 36468–36478. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Karakoulia, S.A.; Kalogiannis, K.G.; Iliopoulou, E.F.; Delimitis, A.; Yiannoulakis, H.; Zampetakis, T.; Lappas, A.A.; Triantafyllidis, K.S. Natural Magnesium Oxide (MgO) Catalysts: A Cost-Effective Sustainable Alternative to Acid Zeolites for the in Situ Upgrading of Biomass Fast Pyrolysis Oil. Appl. Catal. B 2016, 196, 155–173. [Google Scholar] [CrossRef]
- O’Neill, R.E.; Vanoye, L.; De Bellefon, C.; Aiouache, F. Aldol-Condensation of Furfural by Activated Dolomite Catalyst. Appl. Catal. B 2014, 144, 46–56. [Google Scholar] [CrossRef]
- Korolova, V.; Kikhtyanin, O.; Grechman, E.; Russo, V.; Wärnå, J.; Murzin, D.Y.; Kubička, D. Kinetics of Furfural Aldol Condensation with Acetone. Catal. Today 2023, 423, 114272. [Google Scholar] [CrossRef]
- Huang, R.; Chang, J.; Choi, H.; Vohs, J.M.; Gorte, R.J. Furfural Upgrading by Aldol Condensation with Ketones over Solid-Base Catalysts. Catal. Lett. 2022, 152, 3833–3842. [Google Scholar] [CrossRef]
- Su, M.; Li, W.; Zhang, T.; Xin, H.; Li, S.; Fan, W.; Ma, L. Production of Liquid Fuel Intermediates from Furfural via Aldol Condensation over Lewis Acid Zeolite Catalysts. Catal. Sci. Technol. 2017, 7, 3555–3561. [Google Scholar] [CrossRef]
- Hu, W.; Sárossy, Z.; Jensen, A.D.; Daugaard, A.E.; Jensen, P.A. Two-Stage Fixed-Bed Low-Density Polyethylene Pyrolysis: Influence of Using Different Catalytic Materials in the Second Stage. Energy Fuels 2023, 37, 19063–19075. [Google Scholar] [CrossRef]
- Hanein, T.; Simoni, M.; Woo, C.L.; Provis, J.L.; Kinoshita, H. Decarbonisation of Calcium Carbonate at Atmospheric Temperatures and Pressures, with Simultaneous CO2 Capture, through Production of Sodium Carbonate. Energy Environ. Sci. 2021, 14, 6595–6604. [Google Scholar] [CrossRef]
- Galan, I.; Glasser, F.P.; Andrade, C. Calcium Carbonate Decomposition. J. Therm. Anal. Calorim. 2013, 111, 1197–1202. [Google Scholar] [CrossRef]
- Halstead, P.E.; Moore, A.E. 769. The Thermal Dissociation of Calcium Hydroxide. J. Chem. Soc. (Resumed) 1957, 3873–3875. [Google Scholar] [CrossRef]
- Khachani, E.H.H.A. Non-Isothermal Kinetic and Thermodynamic Studies of the Dehydroxylation Process of Synthetic Calcium Hydroxide Ca(OH)2. J. Mater. Environ. Sci. 2014, 2, 615–624. [Google Scholar]
- González-Castano, M.; Navarro de Miguel, J.C.; Sinha, F.; Ghomsi Wabo, S.; Klepel, O.; Arellano-Garcia, H. Cu Supported Fe-SiO2 Nanocomposites for Reverse Water Gas Shift Reaction. J. CO2 Util. 2021, 46, 101493. [Google Scholar] [CrossRef]
- Rajendran, K.; Madampadi, R.; Shee, S.; Subramaniam, R.; Khan, T.S.; Gupta, S.; Haider, M.A.; Jagadeesan, D. Oxygen Vacancy Mediated Reactivity of CaO/CuO Composite for the Synthesis of Amino-N-heterocycles. ChemCatChem 2023, 15, e202301048. [Google Scholar] [CrossRef]
- Rabiah Nizah, M.F.; Taufiq-Yap, Y.H.; Rashid, U.; Teo, S.H.; Shajaratun Nur, Z.A.; Islam, A. Production of Biodiesel from Non-Edible Jatropha Curcas Oil via Transesterification Using Bi2O3–La2O3 Catalyst. Energy Convers. Manag. 2014, 88, 335–339. [Google Scholar] [CrossRef]
- Thitsartarn, W.; Kawi, S. An Active and Stable CaO–CeO2 Catalyst for Transesterification of Oil to Biodiesel. Green Chem. 2011, 13, 3423–3430. [Google Scholar] [CrossRef]
- Kumar, P.; Srivastava, V.C.; Gläser, R.; With, P.; Mishra, I.M. Active Ceria-Calcium Oxide Catalysts for Dimethyl Carbonate Synthesis by Conversion of CO2. Powder Technol. 2017, 309, 13–21. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhou, N.; Dai, L.; Deng, W.; Liu, C.; Cheng, Y.; Liu, Y.; Cobb, K.; Chen, P.; et al. Applications of Calcium Oxide–Based Catalysts in Biomass Pyrolysis/Gasification—A Review. J. Clean. Prod. 2021, 291, 125826. [Google Scholar] [CrossRef]
- Behzadfar, A.; Imani, M.; Farahmandghavi, F. Curing Kinetics of Poly(Furfuryl Alcohol) Resin: A Fractionation and Molecular Weight Study. Polym. Bull. 2022, 79, 7871–7890. [Google Scholar] [CrossRef]
- Li, Z.; Choi, J.-S.; Wang, H.; Lepore, A.W.; Connatser, R.M.; Lewis, S.A.; Meyer, H.M.; Santosa, D.M.; Zacher, A.H. Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-Oil. Energy Fuels 2017, 31, 9585–9594. [Google Scholar] [CrossRef]
- Fang, Z.; Sallach, J.B.; Hodson, M.E. Ethanol, Not Water, Should Be Used as the Dispersant When Measuring Microplastic Particle Size Distribution by Laser Diffraction. Sci. Total Environ. 2023, 902, 166129. [Google Scholar] [CrossRef]
- de Saint Laumer, J.-Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in Gas Chromatography: Prediction of Flame Ionization Detector Response Factors from Combustion Enthalpies and Molecular Structures. Anal. Chem. 2010, 82, 6457–6462. [Google Scholar] [CrossRef]
Material | SiO2 | CaO | Fe2O3 | K2O | Al2O3 | MgO | SO3 | Na2O | TiO2 | Mn2O3 | LOI, 975 °C |
---|---|---|---|---|---|---|---|---|---|---|---|
CRM | 14.4 | 43.0 | 2.15 | 0.85 | 3.60 | 1.78 | 1.13 | 0.29 | 0.19 | 0.05 | 32.3 |
Catalyst Unit | Surface Area [m2/g] | Average Particle Size D [4;3] [µm] | Basic Site Density [μmol/m2] | CO2 Adsorption, <380 °C [μmol/g] |
---|---|---|---|---|
CRM | 5.1 | 12.5 | 10.5 | 52.2 |
cCRM | 7.0 | 16.0 | 42.8 | 299.9 |
CaO | 14.7 | 6.2 | 42.1 | 619.3 |
CaCO3 | 2.5 | 33.1 | 0.4 | 1.1 |
Ca(OH)2 | 15.2 | 9.9 | 33.6 | 504.8 |
Exp. Number | Temperature | Catalyst | Mass Balance Closure wt% | Conversion % | Run-Away |
---|---|---|---|---|---|
1 | 200 °C | No catalyst | 99.0 | 0.7 | No |
2 | 250 °C | No catalyst | 98.7 | 1.3 | No |
3 | 300 °C | No catalyst | 98.2 | 1.6 | No |
4 | 200 °C | CRM | 99.7 | 2.1 | No |
5 | 250 °C | CRM | 99.3 | 2.2 | No |
6 | 300 °C | CRM | 99.8 | 2.0 | No |
7 | 200 °C | cCRM | 99.5 | 13.3 | No |
8 | 250 °C | cCRM | 98.5 | 100 * | Yes |
9 | 300 °C | cCRM | 96.9 | 100 * | Yes |
10 | 200 °C | CaO | 96.7 | 64.3 | No |
11 | 225 °C | CaO | 98.4 | 100 * | Yes |
12 | 250 °C | CaO | 98.1 | 100 * | Yes |
13 | 300 °C | CaO | 97.0 | 100 * | Yes |
14 | 200 °C | Ca(OH)2 | 98.3 | 89.2 | No |
15 | 225 °C | Ca(OH)2 | 99.0 | 100 * | Yes |
16 | 250 °C | Ca(OH)2 | 99.1 | 100 * | Yes |
17 | 300 °C | Ca(OH)2 | 98.2 | 100 * | Yes |
Products | Ca(OH)2 at 200 °C [%] | cCRM at 200 °C [%] | cCRM at 225 °C [%] | CaO at 200 °C [%] |
---|---|---|---|---|
2-furanmethanol | 85.79 | 69.64 | 74.29 | 74.19 |
2.2′-methylenebis-furan | 0.13 | 0.84 | 1.68 | 1.94 |
2,2′-[oxybis(methylene)]bis-furan | 0.58 | 0.00 | 0.62 | 2.27 |
1.2-di-2-furanyl-2-hydroxy-ethanone | 0.20 | 0.86 | 1.47 | 13.13 |
2.5-bis(2-furanylmethyl)-furan | 0.16 | 0.52 | 0.99 | 0.50 |
2.6-di(2-furylmethylidene)cyclohexan-1-one | 0.00 | 0.17 | 0.00 | 0.11 |
Water | 13.14 | 27.98 | 20.95 | 7.65 |
Ca(OH)2 at 200 °C [%] | cCRM at 200 °C [%] | cCRM at 225 °C [%] | CaO at 200 °C [%] | |
---|---|---|---|---|
Degree of deoxygenation | 0.42 | 0.89 | 1.62 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhme, M.; Jensen, P.A.; Høj, M.; Hansen, B.B.; Stummann, M.Z.; Jensen, A.D. Conversion of Furfural as a Bio-Oil Model Compound over Calcium-Based Materials as Sacrificial Low-Cost Catalysts for Bio-Oil Upgrading. Catalysts 2025, 15, 554. https://doi.org/10.3390/catal15060554
Böhme M, Jensen PA, Høj M, Hansen BB, Stummann MZ, Jensen AD. Conversion of Furfural as a Bio-Oil Model Compound over Calcium-Based Materials as Sacrificial Low-Cost Catalysts for Bio-Oil Upgrading. Catalysts. 2025; 15(6):554. https://doi.org/10.3390/catal15060554
Chicago/Turabian StyleBöhme, Moritz, Peter A. Jensen, Martin Høj, Brian B. Hansen, Magnus Z. Stummann, and Anker D. Jensen. 2025. "Conversion of Furfural as a Bio-Oil Model Compound over Calcium-Based Materials as Sacrificial Low-Cost Catalysts for Bio-Oil Upgrading" Catalysts 15, no. 6: 554. https://doi.org/10.3390/catal15060554
APA StyleBöhme, M., Jensen, P. A., Høj, M., Hansen, B. B., Stummann, M. Z., & Jensen, A. D. (2025). Conversion of Furfural as a Bio-Oil Model Compound over Calcium-Based Materials as Sacrificial Low-Cost Catalysts for Bio-Oil Upgrading. Catalysts, 15(6), 554. https://doi.org/10.3390/catal15060554