Defect-Rich Co(OH)2 Induced by Carbon Dots for Oxygen Evolution Reaction
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Catalysts
3.2.1. Synthesis of BS-CDs and N-CDs
3.2.2. Synthesis of BS-CDs/Co(OH)2, N-CDs/Co(OH)2, and Co(OH)2
3.3. Material Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Waidelich, P.; Batibeniz, F.; Rising, J.; Kikstra, J.S.; Seneviratne, S.I. Climate damage projections beyond annual temperature. Nat. Clim. Change 2024, 14, 592. [Google Scholar] [CrossRef] [PubMed]
- Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Lett. 2019, 4, 933–942. [Google Scholar] [CrossRef]
- Tang, J.; Guo, K.; Guan, D.; Hao, Y.; Shao, Z. A semi-vapor electrolysis technology for hydrogen generation from wide water resources. Energy Environ. Sci. 2024, 17, 7394–7402. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, J.; Xu, X.; Zhang, Y.-Q.; Shi, Q.-F.; Wan, Y.; Ramakrishna, S.; Zhang, J.; Zhu, L.; Yokoshima, T.; et al. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting. Adv. Mater. 2024, 36, 2404806. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhai, Y.; Yang, N.; Wang, B.; Liu, S. Lattice Oxygen Redox Mechanisms in the Alkaline Oxygen Evolution Reaction. Adv. Funct. Mater. 2024, 34, 2401610. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, H.; Xi, S.; Lee, W.S.V.; Xue, J. Understanding of Oxygen Redox in the Oxygen Evolution Reaction. Adv. Mater. 2022, 34, 2107956. [Google Scholar] [CrossRef]
- Huang, H.; Kim, H.; Lee, A.; Kim, S.; Lim, W.-G.; Park, C.-Y.; Kim, S.; Kim, S.-K.; Lee, J. Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. Nano Energy 2021, 88, 106276. [Google Scholar] [CrossRef]
- Tang, J.; Zhong, Y.; Su, C.; Shao, Z. Silver Compositing Boosts Water Electrolysis Activity and Durability of RuO2 in a Proton-Exchange-Membrane Water Electrolyzer. Small Sci. 2023, 3, 2300055. [Google Scholar] [CrossRef]
- Gao, G.; Sun, Z.; Chen, X.; Zhu, G.; Sun, B.; Liu, S.; Yamauchi, Y. Recent advances in Ru/Ir-based electrocatalysts for acidic oxygen evolution reaction. Appl. Catal. B Environ. Energy 2023, 343, 123584. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Shi, J.; Xie, M.-Y.; Nie, J.; Huang, G.-F.; Li, B.; Hu, W.; Pan, A.; Huang, W.-Q. Oxygen Defect Engineering Promotes Synergy Between Adsorbate Evolution and Single Lattice Oxygen Mechanisms of OER in Transition Metal-Based (oxy)Hydroxide. Adv. Sci. 2023, 10, 2303321. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, F.; Song, X.; Cai, W.; Ren, J.; Yang, H.; Bao, N. A novel septenary high-entropy (oxy)hydroxide electrocatalyst for boosted oxygen evolution reaction. J. Mater. 2023, 10, 348–354. [Google Scholar] [CrossRef]
- Zuo, S.; Wu, Z.; Zhang, G.; Chen, C.; Ren, Y.; Liu, Q.; Zheng, L.; Zhang, J.; Han, Y.; Zhang, H. Correlating Structural Disorder in Metal (Oxy)hydroxides and Catalytic Activity in Electrocatalytic Oxygen Evolution. Angew. Chem. Int. Ed. 2023, 63, e202316762. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Chen, P.; Zhou, T.; Xu, K.; Chu, W.; Wu, C.; Xie, Y. A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,N-Decorated Graphene. Angew. Chem. Int. Ed. 2017, 56, 7121–7125. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Wang, Y.; Huang, Y.-C.; Wei, Z.; Dong, C.-L.; Ma, J.; Shen, S.; Li, Y.; Wang, S. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569. [Google Scholar] [CrossRef]
- An, J.; Choi, H.; Lee, K.; Kwon, K.-Y. Cobalt-Doped Iron Phosphate Crystal on Stainless Steel Mesh for Corrosion-Resistant Oxygen Evolution Catalyst. Catalysts 2022, 12, 1521. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Y.; Shao, M.; Chen, X.; Yang, Z.; Wang, J.; Chen, H.; Ni, L.; Diao, G.; Chen, M. Construction of Ultrathin Cobalt-Based Nanosheet Arrays on Titanium Mesh as Asymmetric Electrodes for Overall Water Splitting. ACS Sustain. Chem. Eng. 2023, 11, 2499–2510. [Google Scholar] [CrossRef]
- Lv, J.; Yang, X.; Zang, H.-Y.; Wang, Y.-H.; Li, Y.-G. Ultralong needle-like N-doped Co(OH)F on carbon fiber paper with abun-dant oxygen vacancies as an efficient oxygen evolution reaction catalyst. Mater. Chem. Front. 2018, 2, 2045–2053. [Google Scholar] [CrossRef]
- Liu, H.; Guo, D.; Zhang, W.; Cao, R. Co(OH)2 hollow nanoflowers as highly efficient electrocatalysts for oxygen evolution reaction. J. Mater. Res. 2017, 33, 568–580. [Google Scholar] [CrossRef]
- Gong, C.; Zhao, L.; Li, D.; He, X.; Chen, H.; Du, X.; Wang, D.; Fang, W.; Zeng, X.; Li, W. In-situ interfacial engineering of Co(OH)2/Fe7Se8 nanosheets to boost electrocatalytic water splitting. Chem. Eng. J. 2023, 466, 143124. [Google Scholar] [CrossRef]
- Zhi, Y.; Li, Z.; Tang, Y.; Peng, J.; Zhang, Z.; Li, C.; Bao, R.; Chen, G.; Yi, J.; Chen, J.; et al. “Electron-reservoir” CeO2 layer on S-Co(OH)2 to stabilize lattice oxygen for boosting oxygen evolution reaction at large current density. Nano Energy 2024, 134, 110565. [Google Scholar] [CrossRef]
- Yu, X.; Chen, Y.; Wu, Y.; Chu, X.; Liu, B.; Hu, B.; Che, G.; Jiang, W.; Liu, C. Self-reconstructed ZIF-L/Co(OH)2 heterointerface modulates electronic structure of Ru and boosts electrocatalytic hydrogen evolution. Chem. Eng. J. 2024, 490, 151926. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, Y.-K. Understanding highly active and durable Fe-decorated Co(OH)2 catalysts in alkaline oxygen evolution reaction by in situ XANES studies. Chem. Eng. J. 2024, 490, 151701. [Google Scholar] [CrossRef]
- Pei, M.-J.; Shuai, Y.-K.; Gao, X.; Chen, J.-C.; Liu, Y.; Yan, W.; Zhang, J. Ni and Co Active Site Transition and Competition in Fluorine-Doped NiCo(OH)2 LDH Electrocatalysts for Oxygen Evolution Reaction. Small 2024, 20, 2400139. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Wang, Y.; Wang, R.; Chen, Z.; Yang, H.; Yu, K.; Liu, Y.; Huang, H.; Kang, Z.; Menezes, P.W. In Situ Coupling of Carbon Dots with Co-ZIF Nanoarrays Enabling Highly Efficient Oxygen Evolution Electrocatalysis. Small 2023, 19, 2206723. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yu, J.; Song, H.; Du, L.; Sun, W.; Cui, Y.; Su, Y.; Sun, M.; Yin, G.; Lu, S. Enhanced water-splitting performance: Interface-engineered tri-metal phosphides with carbon dots modification. Carbon Energy 2024, 6, e631. [Google Scholar] [CrossRef]
- Wu, L.; Qin, H.; Ji, Z.; Zhou, H.; Shen, X.; Zhu, G.; Yuan, A. Nitrogen-Doped Carbon Dots Modified Fe–Co Sulfide Nanosheets as High-Efficiency Electrocatalysts toward Oxygen Evolution Reaction. Small 2023, 20, 2305965. [Google Scholar] [CrossRef]
- Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar] [CrossRef]
- Fani Rahayu Hidayah, R.; Didik, A.; Lazar, B.; Arturo, S.-A.; Francisco, R.-Z.; Ferry Anggoro Ardy, N.; Vivi, F. The Role of Solvent in Carbon Quantum Dot Synthesis on the Performance of MoS2 Nanosheet/Carbon Quantum Dot Heterostructures as Electrocatalysts for the Hydrogen Evolution Reaction. ACS Appl. Nano Mater. 2025, 8, 1479–1489. [Google Scholar] [CrossRef]
- Ma, M.; Zhu, W.; Liao, F.; Yin, K.; Huang, H.; Feng, K.; Gao, D.; Chen, J.; Li, Z.; Zhong, J.; et al. Sulfonated carbon dots modified IrO2 nanosheet as durable and high-efficient electrocatalyst for boosting acidic oxygen evolution reaction. Nano Res. 2024, 17, 8017–8024. [Google Scholar] [CrossRef]
- Han, M.; Zhu, S.; Lu, S.; Song, Y.; Feng, T.; Tao, S.; Liu, J.; Yang, B. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today 2018, 19, 201–218. [Google Scholar] [CrossRef]
- Zulfajri, M.; Abdelhamid, H.N.; Sudewi, S.; Dayalan, S.; Rasool, A.; Habib, A.; Huang, G.G. Plant Part-Derived Carbon Dots for Biosensing. Biosensors 2020, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wang, J.; Wang, K.; Wo, H.; Wang, X.; Zhuang, W.; Li, T.; Du, X. Carbon-quantum-dots-embedded MnO2 nanoflower as an efficient electrocatalyst for oxygen evolution in alkaline media. Carbon 2019, 143, 457–466. [Google Scholar] [CrossRef]
- Jin, B.; Wang, Q.; Sainio, J.; Saveleva, V.A.; Jiang, H.; Shi, J.; Ali, B.; Kallio, A.-J.; Huotari, S.; Sundholm, D.; et al. Amorphous carbon modulated-quantum dots NiO for efficient oxygen evolution in anion exchange membrane water electrolyzer. Appl. Catal. B Environ. Energy 2024, 358, 124437. [Google Scholar] [CrossRef]
- Ni, Q.; Zhang, S.; Wang, K.; Guo, H.; Zhang, J.; Wu, M.; Wang, L. Carbon quantum dot-mediated binary metal–organic framework nanosheets for efficient oxygen evolution at ampere-level current densities in proton exchange mem-brane electrolyzers. J. Mater. Chem. A 2024, 12, 31253–31261. [Google Scholar] [CrossRef]
- Wang, B.; Song, H.; Qu, X.; Chang, J.; Yang, B.; Lu, S. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord. Chem. Rev. 2021, 442, 214010. [Google Scholar] [CrossRef]
- Feng, X.; Shi, Y.; Niu, W.; Zhang, N.; Wang, C.; Lei, Y.; Yang, H.; Wang, H. Sea urchin-like cobalt selenide/N-doped carbon dots as efficient bifunctional electrocatalysts for water electrolysis. J. Ind. Eng. Chem. 2023, 133, 162–171. [Google Scholar] [CrossRef]
- Fang, Y.; Xue, Y.; Hui, L.; Yu, H.; Liu, Y.; Xing, C.; Lu, F.; He, F.; Liu, H.; Li, Y. In situ growth of graphdiyne based heterostructure: Toward efficient overall water splitting. Nano Energy 2019, 59, 591–597. [Google Scholar] [CrossRef]
- Wang, X.-R.; Liu, J.-Y.; Liu, Z.-W.; Wang, W.-C.; Luo, J.; Han, X.-P.; Du, X.-W.; Qiao, S.-Z.; Yang, J. Identifying the Key Role of Pyridinic-N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. Adv. Mater. 2018, 30, 1800005. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, W.; Zhang, X.; Zheng, Y. Coupling of chrysanthemum-shaped cobalt hydroxide and nitrogen-doped carbon dots for high-performance hybrid supercapacitors. J. Electroanal. Chem. 2022, 925, 116666. [Google Scholar] [CrossRef]
- Zhang, Y.; Foster, C.W.; Banks, C.E.; Shao, L.; Hou, H.; Zou, G.; Chen, J.; Huang, Z.; Ji, X. Graphene-Rich Wrapped Petal-Like Rutile TiO2 tuned by Carbon Dots for High-Performance Sodium Storage. Adv. Mater. 2016, 28, 9391–9399. [Google Scholar] [CrossRef]
- Xu, Z.; Li, W.; Yan, Y.; Wang, H.; Zhu, H.; Zhao, M.; Yan, S.; Zou, Z. In-Situ Formed Hydroxide Accelerating Water Dissociation Kinetics on Co3N for Hydrogen Production in Alkaline Solution. ACS Appl. Mater. Interfaces 2018, 10, 22102–22109. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhang, W.; Song, Y.; Yin, F.; Zhang, C.; Zhang, L. In situ construction of Co/Co3O4 with N-doped porous carbon as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Catal. Today 2019, 355, 286–294. [Google Scholar] [CrossRef]
- Aljabour, A.; Awada, H.; Song, L.; Sun, H.; Offenthaler, S.; Yari, F.; Bechmann, M.; Scharber, M.C.; Schöfberger, W. A Bifunctional Electrocatalyst for OER and ORR based on a Cobalt(II) Triazole Pyridine Bis-[Cobalt(III) Corrole] Complex. Angew. Chem. Int. Ed. 2023, 62, e202302208. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Guo, Y.; Chen, Z.; Wu, D.; Zhang, S.; Yang, B.; Zhang, J. Regulating electronic structure of two-dimensional porous Ni/Ni3N nanosheets architecture by Co atomic incorporation boosts alkaline water splitting. InfoMat 2021, 4, e12251. [Google Scholar] [CrossRef]
- Kumar, M.; Nagaiah, T.C. A multifunctional cobalt iron sulfide electrocatalyst for high performance Zn–air batteries and overall water splitting. J. Mater. Chem. A 2022, 10, 4720–4730. [Google Scholar] [CrossRef]
- Zhao, Y.; Dongfang, N.; Triana, C.A.; Huang, C.; Erni, R.; Wan, W.; Li, J.; Stoian, D.; Pan, L.; Zhang, P.; et al. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy Environ. Sci. 2022, 15, 727–739. [Google Scholar] [CrossRef]
- Ma, R.; Hao, R.; Zhou, W.; Cao, Y.; Chai, H. Hollow CoP microspheres as superior bifunctional electrocatalysts for hydrogen evolution in a broad pH range and oxygen evolution reactions. J. Solid State Chem. 2022, 316, 123499. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, B.; Fang, B.; Feng, L. A comparative study of NiCo2O4 catalyst supported on Ni foam and from solution residuals fabricated by a hydrothermal approach for electrochemical oxygen evolution reaction. Chem. Commun. 2018, 54, 13151–13154. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Guo, C.; Wang, H.; Xu, W.; Liu, Q.; Zhao, Q.; Wu, M. Defect-Rich Co(OH)2 Induced by Carbon Dots for Oxygen Evolution Reaction. Catalysts 2025, 15, 219. https://doi.org/10.3390/catal15030219
Han X, Guo C, Wang H, Xu W, Liu Q, Zhao Q, Wu M. Defect-Rich Co(OH)2 Induced by Carbon Dots for Oxygen Evolution Reaction. Catalysts. 2025; 15(3):219. https://doi.org/10.3390/catal15030219
Chicago/Turabian StyleHan, Xuan, Chao Guo, Hui Wang, Weijuan Xu, Qinlian Liu, Qingshan Zhao, and Mingbo Wu. 2025. "Defect-Rich Co(OH)2 Induced by Carbon Dots for Oxygen Evolution Reaction" Catalysts 15, no. 3: 219. https://doi.org/10.3390/catal15030219
APA StyleHan, X., Guo, C., Wang, H., Xu, W., Liu, Q., Zhao, Q., & Wu, M. (2025). Defect-Rich Co(OH)2 Induced by Carbon Dots for Oxygen Evolution Reaction. Catalysts, 15(3), 219. https://doi.org/10.3390/catal15030219