Calcium Oxide Nanoparticles as Green Nanocatalysts in Multicomponent Heterocyclic Synthesis: Mechanisms, Metrics, and Future Directions
Abstract
1. Introduction
2. Properties and Characteristics of CaO Nanoparticles (CaO NPs)
2.1. Structural and Morphological Features
2.2. Synthetic Methods and Surface Basicity
2.3. Catalytic and Environmental Advantages
2.4. Reusability and Catalyst Stability
2.5. Comparative Evaluation with Other Oxide Nanocatalysts
3. Applications of CaO Nanoparticles in Multicomponent Synthesis of Heterocycles
3.1. Synthesis of Five-Membered Heterocycles: Pyrazoles, Thiazoles, and Pyrazolines
3.2. Synthesis of Six-Membered Heterocycles: Pyridines and Pyrimidines
4. Challenges and Opportunities
4.1. Scale-Up and Continuous-Flow Precedents for CaO NPs
4.2. Lifecycle and Green Metrics (E-Factor/PMI) Across Substrate Classes
4.3. Computational Modeling to Rationalize Basic-Site Distributions
4.4. Stability and Operando Performance Under Flow
4.5. Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCRs | Multicomponent Reactions |
CaO NPs | Calcium oxide Nanoparticles |
TEM | Transmission Electron Microscopy |
SEM | Scanning Electron Microscopy |
XRD | X-ray Diffraction Spectroscopy |
NMR | Nuclear Magnetic Resonance |
TGA | Thermogravimetric Analysis |
IR | Infrared Spectroscopy |
FTIR | Fourier-Transformed Infrared Spectroscopy |
3CC | Three-Component Coupling |
EDX | Energy-Dispersive X-Ray Spectrometry |
EtOH | Ethanol |
EtOAc | Ethyl Acetate |
LC-MS | Liquid Chromatography Mass Spectroscopy |
EDG | Electron-Donating Group |
EWG | Electron-Withdrawing Group |
Mw | Microwave |
DMSO | Dimethyl Sulphoxide |
References
- Rusu, A.; Moga, I.M.; Uncu, L.; Hancu, G. The Role of Five-Membered heterocycles Molecular Structure of Antibacterial Drugs Used Therapy. Pharmaceutics 2023, 15, 2554. [Google Scholar] [CrossRef]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: Miniperspective. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 2007, 6, 881–890. [Google Scholar] [CrossRef]
- Meanwell, N.A. Improving drug candidates by design: A focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol. 2011, 24, 1420–1456. [Google Scholar] [CrossRef]
- Trost, B.M. Atom economy—A challenge for organic synthesis: Homogeneous catalysis leads the way. Angew. Chem. Int. Ed. 1995, 34, 259–281. [Google Scholar] [CrossRef]
- Domling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 2000, 39, 3168–3210. [Google Scholar] [CrossRef]
- Toure, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev. 2009, 109, 4439–4486. [Google Scholar] [CrossRef] [PubMed]
- Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev. 2014, 114, 8323–8359. [Google Scholar] [CrossRef]
- Coppola, G.A.; Pillitteri, S.; Van der Eycken, E.V.; You, S.L.; Sharma, U.K. Multicomponent reactions and photo/electrochemistry join forces: Atom economy meets energy efficiency. Chem. Soc. Rev. 2022, 51, 2313–2382. [Google Scholar] [CrossRef]
- Xin, X.; Wang, Y.; Kumar, S.; Liu, X.; Lin, Y.; Dong, D. Efficient one-pot synthesis of substituted pyridines through multicomponent reaction. Org. Biomol. Chem. 2010, 8, 3078–3082. [Google Scholar] [CrossRef]
- Hulme, C.; Gore, V. Multicomponent reactions: Emerging chemistry in drug discovery from xylocain to crixivan. Curr. Med. Chem. 2003, 10, 51–80. [Google Scholar] [CrossRef]
- de Orru, R.V.; Greef, M. Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis 2003, 2003, 1471–1499. [Google Scholar] [CrossRef]
- Varma, R. Solvent-free organic syntheses. using supported reagents and microwave irradiation. Green Chem. 1999, 1, 43–55. [Google Scholar] [CrossRef]
- Tao, L.; Wei, Y.; Shi, M. Thermally-Induced Intramolecular [4+2] Cycloaddition of Allylamino-or Allyloxy-Tethered Alkylidenecyclopropanes. Chem. Asian J. 2021, 16, 2463–2468. [Google Scholar] [CrossRef]
- Nunes, P.S.G.; Vidal, H.D.A.; Corrêa, A.G. Recent advances in catalytic enantioselective multicomponent reactions. Org. Bio. Chem. 2020, 18, 7751–7773. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem. 2010, 12, 743–754. [Google Scholar] [CrossRef]
- Varma, R.S. Greener and sustainable trends in synthesis of organic and nanomaterials. ACS Sustain. Chem. Eng. 2016, 4, 5866–5878. [Google Scholar] [CrossRef]
- Li, X.; Zhong, F.; Li, P.; Xiao, X.J. Transition metal modified Al2O3 mesoporous nanospheres for catalysis of organic reactions. Appl. Surf. Sci. 2024, 653, 159355. [Google Scholar] [CrossRef]
- Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2005, 44, 7852–7872. [Google Scholar] [CrossRef]
- Feng, X.; Ji, P.; Li, Z.; Drake, T.; Oliveres, P.; Chen, E.Y.; Lin, W. Aluminum hydroxide secondary building units in a metal–organic framework support earth-abundant metal catalysts for broad-scope organic transformations. ACS Catal. 2019, 9, 3327–3337. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Trimetallic nanoparticles: Greener synthesis and their applications. Nanomaterials 2020, 10, 1784. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi Hafez Moghaddas, S.S.; Samareh Moosavi, S.; Kazemi Oskuee, R. Green synthesis of calcium oxide nanoparticles in Linum usitatissimum extract and investigation of their photocatalytic and cytotoxicity effects. Biomass Conv. Bioref. 2024, 14, 5125–5134. [Google Scholar] [CrossRef]
- Khine, E.E.; Koncz-Horvath, D.; Kristaly, F. Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. J. Nanopart. Res. 2022, 24, 139. [Google Scholar] [CrossRef]
- Khan, A.; Hussain, S.T.; Naeem, A.; Sadiqa, A.; Ahmad, A.; Shehzada, M.A.A.; Albaqami, M.D. Next-generation calcium oxide nanoparticles: A breakthrough in energy storage and humidity sensing. Results Chem. 2025, 14, 102073. [Google Scholar] [CrossRef]
- Borah, M.J.; Das, A.; Das, V.; Bhuyan, N.; Deka, D. Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel 2019, 242, 345–354. [Google Scholar] [CrossRef]
- Tigro, A.A.; Hailegiorgis, S.M.; Reshad, A.S. Heterogeneous Alkaline Calcium Oxide Nano-Catalyst Supported on Porous Materials for the Transesterification Reaction: A Review. Results Eng. 2025, 27, 105912. [Google Scholar] [CrossRef]
- Niju, S.; Meera, K.M.; Begum, S.; Anantharaman, N. Modification of egg shell and its application in biodiesel production. J. Saudi Chem. Soc. 2014, 18, 702–706. [Google Scholar] [CrossRef]
- Jadhav, V.; Bhagare, A.; Wahab, S.; Lokhande, D.; Vaidya, C.; Dhayagude, A.; Khalid, M.; Aher, J.; Mezni, A.; Dutta, M. Green synthesized calcium oxide nanoparticles (CaO NPs) using leaves aqueous extract of moringa oleifera and evaluation of their antibacterial activities. J. Nanomater. 2022, 1, 9047507. [Google Scholar] [CrossRef]
- Ahmad, A.; Rao, S.; Shetty, N.S. Green multicomponent synthesis of pyrano [2, 3-c] pyrazole derivatives: Current insights and future directions. RSC Adv. 2023, 13, 28798–28833. [Google Scholar] [CrossRef]
- Gawande, M.B.; Bonifácio, V.D.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev. 2013, 42, 5522–5551. [Google Scholar] [CrossRef]
- Santos, A.S.; Raydan, D.; Cunha, J.C.; Viduedo, N.; Silva, A.M.; Marques, M.M.B. Advances in green catalysis for the synthesis of medicinally relevant N-heterocycles. Catalysts 2021, 11, 1108. [Google Scholar] [CrossRef]
- Khalil, M.; Kadja, G.T.; IImi, M.M. Advanced nanomaterials for catalysis: Current progress in fine chemical synthesis, hydrocarbon processing, and renewable energy. J. Ind. Eng. Chem. 2021, 93, 78–100. [Google Scholar] [CrossRef]
- Aljaddua, H.I.; Alhumaimess, M.S.; Hassan, H.M. CaO nanoparticles incorporated metal organic framework (NH2-MIL-101) for Knoevenagel condensation reaction. Arab. J. Chem. 2022, 15, 103588. [Google Scholar] [CrossRef]
- Khalid, R.; Din, M.I.; Parveen, A.; Hussain, Z.A. Critical Review on Green Synthesis of Calcium Oxide Nanoparticles and Calcium Based Nanocomposites. BioNanoScience 2025, 15, 390. [Google Scholar] [CrossRef]
- Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 2004, 104, 3037–3058. [Google Scholar] [CrossRef]
- Sharma, N.; Ojha, H.; Bharadwaj, A.; Pathak, D.P.; Sharma, R.K. Preparation and catalytic applications of nanomaterials: A review. RSC Adv. 2015, 5, 53381–53403. [Google Scholar] [CrossRef]
- Cioc, R.C.; Ruijter, E.; Orru, R.V. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014, 16, 2958–2975. [Google Scholar] [CrossRef]
- Vinogradov, M.G.; Turova, O.V.; Zlotin, S.G. Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions. Org. Biomol. Chem. 2019, 17, 3670–3708. [Google Scholar] [CrossRef]
- Sahu, N. One-Pot Multicomponent Reactions: A Versatile Approach for Heterocyclic Compound Synthesis. Reactions 2024, 10, 1–7. [Google Scholar]
- Deshmukh, M.B.; Salunkhe, S.M.; Patil, D.R.; Anbhule, P.V. A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their anti-bacterial activity. Eur. J. Med. Chem. 2009, 44, 2651–2654. [Google Scholar] [CrossRef]
- Sohal, H.S. A review on recent trends in synthesis and applications of 1, 4-dihydropyridines. Mater. Today Proc. 2022, 48, 1163–1170. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Vijai Anand, K.; Reshma, M.; Kannan, M.; Muthamil Selvan, S.; Chaturvedi, S.; Shalan, A.E.; Govindaraju, K. Preparation and characterization of calcium oxide nanoparticles from marine molluscan shell waste as nutrient source for plant growth. J. Nanostruct. Chem. 2021, 11, 409–422. [Google Scholar] [CrossRef]
- Donelson, J.L.; Gibbs, R.A.; De, S.K. An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation. J. Mol. Catal. A Chem. 2006, 256, 309–311. [Google Scholar] [CrossRef]
- Liu, X.; He, H.; Wang, Y.; Zhu, S.; Piao, X. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 2000, 87, 216–221. [Google Scholar] [CrossRef]
- Friend, C.M.; Xu, B. Heterogeneous catalysis: A central science for a sustainable future. Acc. Chem. Res. 2017, 50, 517–521. [Google Scholar] [CrossRef]
- Kumari, S.; Raturi, S.; Kulshrestha, S.; Chauhan, K.; Dhingra, S.; András, K.; Singh, T. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 2023, 27, 1739–1763. [Google Scholar] [CrossRef]
- Harish, V.; Ansari, M.M.; Tewari, D.; Gaur, M.; Yadav, A.B.; García-Betancourt, M.L.; Barhoum, A. Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials 2022, 12, 3226. [Google Scholar] [CrossRef]
- Patil, N.; Bhaskar, R.; Vyavhare, V.; Dhadge, R.; Patil, Y. Overview on methods of synthesis of nanoparticles. J. Curr. Pharma. Res. 2021, 13, 11–16. [Google Scholar] [CrossRef]
- Barhoum, A.; Shalan, A.E.; El-Hout, S.I.; Ali, G.A.; Abdelbasir, S.M.; Abu Serea, E.S.; Pal, K. A broad family of carbon nanomaterials: Classification, properties, synthesis, and emerging applications. In Handbook of Nanofibers; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–40. [Google Scholar]
- Macheli, L.; Malefane, M.E.; Jewell, L.L. Waste-derived calcium oxide catalysts in biodiesel production: Exploring various waste sources, deactivation challenges, and improvement strategies. Bioresour. Technol. Rep. 2025, 29, 102021. [Google Scholar] [CrossRef]
- Ashrafi, G.; Nasrollahzadeh, M.; Jaleh, B.; Sajjadi, M.; Ghafuri, H. Biowaste-and nature-derived (nano) materials: Biosynthesis, stability and environmental applications. Adv. Colloid Interface Sci. 2022, 301, 102599. [Google Scholar] [CrossRef]
- Wagare, D.S.; Shirsath, S.E.; Shaikh, M.; Netankar, P. Sustainable solvents in chemical synthesis: A review. Environ. Chem. Lett. 2021, 4, 3263–3282. [Google Scholar] [CrossRef]
- Kidwai, M.; Saxena, S.; Mohan, R.; Venkataramanan, R.J.C.S. A novel one pot synthesis of nitrogen containing heterocycles: An alternate methodology to the Biginelli and Hantzsch reactions. J. Chem. Soc. 2002, 1, 1845–1846. [Google Scholar] [CrossRef]
- Cui, H.; Li, P.; Zhao, H.; Chen, Y.; Yuan, Y.; Liu, Y.; Jiao, M. One-pot multi-component synthesis of 2-Amino-4H-chromenes catalyzed by a fiber super base under mild conditions. Tetrahedron 2024, 167, 134282. [Google Scholar] [CrossRef]
- Kurteva, V. Recent progress in metal-free direct synthesis of imidazo [1, 2-a] pyridines. ACS Omega 2018, 6, 35173–35185. [Google Scholar] [CrossRef]
- Maddila, S.; Kerru, N.; Jonnalagadda, S.B. Recent progress in the multicomponent synthesis of pyran derivatives by sustainable catalysts under green conditions. Molecules 2022, 27, 6347. [Google Scholar] [CrossRef]
- Mirghiasi, Z.; Bakhtiari, F.; Darezereshki, E.; Esmaeilzadeh, E. Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J. Ind. Eng. Chem. 2014, 20, 113–117. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Viswanath, I.K.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L.N. Review on nanomaterials: Synthesis and applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Kharissova, O.V.; Kharisov, B.I.; Oliva Gonzalez, C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 2019, 6, 191378. [Google Scholar] [CrossRef]
- Hosseingholian, A.; Gohari, S.D.; Feirahi, F.; Moammeri, F.; Mesbahian, G.; Moghaddam, Z.S.; Ren, Q. Recent advances in green synthesized nanoparticles: From production to application. Mater. Today Sustain. 2023, 24, 100500. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef]
- Paganini, M.C.; Chiesa, M.; Martino, P.; Giamello, E. EPR study of the surface basicity of calcium oxide.1. The CaO− NO chemistry. J. Phys. Chem. B 2002, 106, 12531–12536. [Google Scholar] [CrossRef]
- Ahmad, U.; Khan, M.A.; Zahid, M.U.; Alarjani, K.M.; Gawwad, M.R.A.; Hussain, S.J.; Bokhari, S.A.I. Effect of surface capping on the biological properties of calcium oxide nanoparticles (CaO-NPs). Chem. Pap. 2024, 78, 4971–4990. [Google Scholar] [CrossRef]
- Lalithamba, H.S.; Siddekha, A.; Rashmi Triveni, B.V. Plant mediated synthesis of CaO nano-particles and investigation of morphological, spectroscopic, electrical, and catalytic properties. J. Mater. Sci. Mater. Electron. 2023, 34, 2065. [Google Scholar] [CrossRef]
- Gadore, V.; Mishra, S.R.; Yadav, N.; Yadav, G.; Ahmaruzzaman, M. Metal oxide-based heterogeneous catalysts for biodiesel production. Next Sustain. 2023, 2, 100012. [Google Scholar] [CrossRef]
- Van Schijndel, J.; Canalle, L.A.; Molendijk, D.; Meuldijk, J. The green Knoevenagel condensation: Solvent-free condensation of benzaldehydes. Green Chem. Lett. Rev. 2017, 10, 404–411. [Google Scholar] [CrossRef]
- Gupta, D.; Boora, A.; Thakur, A.; Gupta, T.K. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ. Res. 2023, 231, 116316. [Google Scholar] [CrossRef] [PubMed]
- Bosica, G.; Abdilla, R. Recent advances in multicomponent reactions catalysed under operationally heterogeneous conditions. Catalysts 2022, 12, 725. [Google Scholar] [CrossRef]
- Shaikh, I.R. Organocatalysis: Key trends in green synthetic chemistry, challenges, scope towards heterogenization, and importance from research and industrial point of view. J. Catalyst. 2014, 2014, 402860. [Google Scholar] [CrossRef]
- Pareek, A.; Dada, R.; Yaragorla, S. Calcium-Catalyzed Multicomponent Reactions in Organic Synthesis. Asian J. Org. Chem. 2025, 14, e202500141. [Google Scholar] [CrossRef]
- Nandi, G.C.; Samai, S.; Singh, M.S. Biginelli and Hantzsch-type reactions leading to highly functionalized dihydropyrimidinone, thiocoumarin, and pyridopyrimidinone frameworks via ring annulation with β-oxodithioesters. J. Org. Chem. 2010, 75, 7785–7795. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Di, C.; Li, T.; Chun, Y.; Xu, Q. Preparation and catalytic behaviour of biomorphic calcium oxide/carbon solid base materials. Catal. Sci. Technol. 2015, 5, 5185–5195. [Google Scholar] [CrossRef]
- Metiu, H.; Chreétien, S.; Hu, Z.; Li, B.; Sun, X. Chemistry of Lewis acid–base pairs on oxide surfaces. J. Phys. Chem. 2012, 116, 10439–10450. [Google Scholar] [CrossRef]
- Adaikalam, K.; Hussain, S.; Anbu, P.; Rajaram, A.; Sivanesan, I.; Kim, H.S. Eco-friendly facile conversion of waste eggshells into CaO nanoparticles for environmental applications. Nanomaterials 2024, 14, 1620. [Google Scholar] [CrossRef] [PubMed]
- Jan, H.A.; Osman, A.I.; Šurina, I.; Saleh, J.; Kumar, R.; Al-Fatesh, A.S. Recycling calcium oxide nanoparticles for sustainable biodiesel production from nonedible feedstock Argemone mexicana L. Biofuels 2024, 15, 645–654. [Google Scholar] [CrossRef]
- Gangu, K.K.; Maddila, S.; Maddila, S.N.; Jonnalagadda, S.B. Novel iron doped calcium oxalates as promising heterogeneous catalysts for one-pot multi-component synthesis of pyranopyrazoles. RSC Adv. 2017, 7, 423–432. [Google Scholar] [CrossRef]
- Choudhary, A.; Verma, M.; Bharti, R.; Sharma, R. Eco-Friendly and Facile Synthesis of Diverse Heterocycles via Zirconia Nanoparticles Catalyzed One Pot Multicomponent Reaction. Curr. Org. Chem. 2024, 28, 1234–1248. [Google Scholar] [CrossRef]
- Messire, G.; Caillet, E.; Berteina-Raboin, S. Green catalysts and/or green solvents for sustainable multi-component reactions. Catalysts 2024, 14, 593. [Google Scholar] [CrossRef]
- Boey, P.L.; Maniam, G.P.; Abd Hamid, S. Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour. Technol. 2009, 24, 6362–6368. [Google Scholar] [CrossRef]
- Kouzu, M.; Hidaka, J.S. Transesterification of vegetable oil into biodiesel catalyzed by CaO: A review. Fuel 2009, 93, 1–12. [Google Scholar] [CrossRef]
- Dikshit, P.K.; Kumar, J.; Das, A.K.; Sadhu, S.; Sharma, S.; Singh, S.; Kim, B.S. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021, 11, 902. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, M.; Wei, G.; Li, R.; Wang, N.; Yang, X.; Peng, Y. High visible light responsive ZnIn2S4/TiO2-x induced by oxygen defects to boost photocatalytic hydrogen evolution. Appl. Surf. Sci. 2023, 622, 156839. [Google Scholar] [CrossRef]
- Agrwal, A.; Rai, P.; Kumar, V. Recent Developments in Heterogeneous Nano Catalyst for Green Synthesis: A Review. Top. Catal. 2025, 68, 2213–2231. [Google Scholar] [CrossRef]
- Fedorova, O.V.; Titova, Y.A.; Ovchinnikova, I.G. Metal oxides in multicomponent synthesis of heterocycles. Chem. Heterocycl. Compd. 2021, 57, 900–904. [Google Scholar] [CrossRef]
- El-sherif, A.A.; Hamad, A.M.; Shams-Eldin, E.; Mohamed, H.A.A.E.; Ahmed, A.M.; Mohamed, M.A.; Fahmy, H.M. Power of recycling waste cooking oil into biodiesel via green CaO-based eggshells/Ag heterogeneous nanocatalyst. Renew. Energy 2023, 202, 1412–1423. [Google Scholar] [CrossRef]
- Dey, N.; Mandal, A.; Jana, R.; Bera, A.; Azad, S.A.; Giri, S.; Samanta, S. Recent developments in the solvent-free synthesis of heterocycles. New J. Chem. 2023, 47, 13035–13079. [Google Scholar] [CrossRef]
- Gulati, S.; Singh, R.; Sangwan, S. A review on green synthesis and biological activities of medicinally important nitrogen and oxygen containing heterocycles. Curr. Org. Chem. 2022, 26, 1848–1894. [Google Scholar] [CrossRef]
- Nami Chemazi, N.; Nami, N.; Sheikh Bostanabad, A. Biosynthesis and characterization of Fe3O4/CaO nanoparticles and investigation of its catalytic property. J. Nanostructures 2022, 12, 160–169. [Google Scholar]
- Oueda, N.; Bonzi-Coulibaly, Y.L.; Ouédraogo, I.W. Deactivation processes, regeneration conditions and reusability performance of CaO or MgO based catalysts used for biodiesel production—A review. Mater. Sci. Appl. 2017, 8, 94. [Google Scholar] [CrossRef]
- Gadewar, M.; Prashanth, G.K.; Babu, M.R.; Dileep, M.S.; Prashanth, P.A.; Rao, S.; Orhan, E. Unlocking nature’s potential: Green synthesis of ZnO nanoparticles and their multifaceted applications–A concise overview. J. Saudi Chem. Soc. 2024, 28, 101774. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dionysiou, D.D. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Gatou, M.A.; Skylla, E.; Dourou, P.; Pippa, N.; Gazouli, M.; Lagopati, N.; Pavlatou, E.A. Magnesium oxide (MgO) nanoparticles: Synthetic strategies and biomedical applications. Crystals 2024, 14, 215. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.C.; Levers, O.; Brohl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Kerru, N.; Bhaskaruni, S.V.; Gummidi, L.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synth. Commun. 2019, 49, 2437–2459. [Google Scholar] [CrossRef]
- Gupta, S.S.; Kumari, S.; Kumar, I.; Sharma, U. Eco-friendly and sustainable synthetic approaches to biologically significant fused N-heterocycles. Chem. Heterocycl. Compd. 2020, 56, 433–444. [Google Scholar] [CrossRef]
- Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev. 2009, 109, 725–748. [Google Scholar] [CrossRef]
- Ormazábal, E.; Moreno-Serna, V.; Sepúlveda, F.A.; Loyo, C.; Ortiz, J.A.; Melo, F.; Zapata, P.A. Antimicrobial nanocomposites based on biowaste eggshell derived CaO nanoparticles for potential food packaging application. Food Bioprod. Process. 2024, 148, 123–135. [Google Scholar] [CrossRef]
- Zaera, F. Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 2013, 42, 2746–2762. [Google Scholar] [CrossRef]
- Feng, J.; Geng, W.C.; Jiang, H.; Wu, B. Recent advances in biocatalysis of nitrogen-containing heterocycles. Biotechnol. Adv. 2022, 54, 107813. [Google Scholar] [CrossRef]
- Balaji, S.; Pandian, M.S.; Ganesamoorthy, R.; Karchiyappan, T. Green synthesis of metal oxide nanoparticles using plant extracts: A sustainable approach to combat antimicrobial resistance. Environ. Nanotechnol. Monit. Manag. 2025, 23, 101066. [Google Scholar] [CrossRef]
- Momeni, S.; Ghorbani-Vaghei, R. An efficient, green and solvent-free protocol for one-pot synthesis of 1, 4-dihydropyridine derivatives using a new recyclable heterogeneous catalyst. J. Mol. Struct. 2023, 1288, 135758. [Google Scholar] [CrossRef]
- Sharifi, M.; Tangestaninejad, S.; Moghadam, M.; Marandi, A.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Aghayani, S. Metal-organic frameworks-derived CaO/ZnO composites as stable catalysts for biodiesel production from soybean oil at room temperature. Sci. Rep. 2025, 15, 3610. [Google Scholar] [CrossRef]
- Lakhani, P.; Bhanderi, D.; Modi, C.K. Nanocatalysis: Recent progress, mechanistic insights, and diverse applications. J. Nanopar. Res. 2024, 26, 148. [Google Scholar] [CrossRef]
- Alobaidi, Y.M.; Ali, M.M.; Mohammed, A.M. Synthesis of Calcium Oxide Nanoparticles from Waste Eggshell by Thermal Decomposition and their Applications. Jordan J. Biol. Sci. 2022, 15. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, H.; Wang, T.; Han, X.; Sun, H.; Fang, L.; Cheng, B. Synthesis of 5 H-Chromeno [2, 3-d] pyrimidin-5-one Derivatives via Microwave-Promoted Multicomponent Reaction. J. Org. Chem. 2021, 86, 18304–18311. [Google Scholar] [CrossRef]
- Shaabani, A.; Maleki, A.; Mofakham, H. Novel multicomponent one-pot synthesis of tetrahydro-1H-1, 5-benzodiazepine-2-carboxamide derivatives. J. Comb. Chem. 2008, 10, 595–598. [Google Scholar] [CrossRef]
- Bajpai, S.; Kamboj, M.; Singh, S.; Yadav, M.; Banik, B.K. Solvent-Free Synthesis of Bioactive Heterocycles. Curr. Organocatal. 2024, 11, 301–309. [Google Scholar] [CrossRef]
- Song, J.; Han, B. Green chemistry: A tool for the sustainable development of the chemical industry. Natl. Sci. Rev. 2015, 2, 255–256. [Google Scholar] [CrossRef]
- Ganesh, K.N.; Zhang, D.; Miller, S.J.; Rossen, K.; Chirik, P.J.; Kozlowski, M.C.; Voutchkova-Kostal, A.M. Green chemistry: A framework for a sustainable future. ACS Omega 2021, 6, 16254–16258. [Google Scholar] [CrossRef] [PubMed]
- Zuin, V.G.; Eilks, I.; Elschami, M.; Kümmerer, K. Education in green chemistry and in sustainable chemistry: Perspectives towards sustainability. Green Chem. 2021, 23, 1594–1608. [Google Scholar] [CrossRef]
- Bosica, G.; De Nittis, R.; Borg, R. Solvent-free, one-pot, multicomponent synthesis of xanthene derivatives. Catalysts 2023, 13, 561. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Qiu, D.; Li, Y.; Yao, L.; Duan, J. Ultrasonic assisted microwave synthesis of poly (Chitosan-co-gelatin)/polyvinyl pyrrolidone IPN hydrogel. Ultrason. Sonochem. 2018, 40, 714–719. [Google Scholar] [CrossRef]
- Sangeeta, H.L.S.; Chahar, M.; Sahal, S.; Khaturia, S. Greener synthesis of pyranopyrazole derivatives catalyzed by CaO nanoparticles. Rasayan J. Chem. 2022, 15, 326–333. [Google Scholar] [CrossRef]
- Khalil, K.D.; Ahmed, H.A.; Bashal, A.H.; Bräse, S.; Nayl, A.A.; Gomha, S.M. Efficient, recyclable, and heterogeneous base nanocatalyst for thiazoles with a chitosan-capped calcium oxide nanocomposite. Polymers 2022, 14, 3347. [Google Scholar] [CrossRef] [PubMed]
- Sameri, F.; Bodaghifard, M.A.; Mobinikhaledi, A. Ionic liquid-coated nanoparticles (CaO@SiO2@BAIL): A bi-functional and environmentally benign catalyst for green synthesis of pyridine, pyrimidine, and pyrazoline derivatives. Polycycl. Aromat. Compd. 2022, 42, 4700–4716. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Ghasemzadeh, M.A.; Mehrabi, M.J.S.I. Calcium oxide nanoparticles catalyzed one-step multicomponent synthesis of highly substituted pyridines in aqueous ethanol media. Sci. Iran. 2013, 20, 549–554. [Google Scholar]
- Heidarzadeh, T.; Nami, N.; Zareyee, D. Synthesis of indole derivatives using biosynthesized ZnO-CaO nanoparticles as an efficient catalyst. J. Nano Res. 2021, 66, 61–71. [Google Scholar] [CrossRef]
- Samantaray, S.; Pradhan, D.K.; Hota, G.; Mishra, B.G. Catalytic application of CeO2–CaO nanocomposite oxide synthesized using amorphous citrate process toward the aqueous phase one pot synthesis of 2-amino-2-chromenes. Chem. Eng. J. 2012, 193, 1–9. [Google Scholar] [CrossRef]
- Dhakar, A.; Goyal, R.; Rajput, A.; Kaurava, M.S.; Tomar, V.S.; Agarwal, D.D. Multicomponent synthesis of 4H-pyran derivatives using KOH loaded calcium oxide as catalyst in solvent free condition. Curr. Chem. Lett. 2019, 8, 125–136. [Google Scholar] [CrossRef]
- Sameri, F.; Mobinikhaledi, A.; Bodaghifard, M.A. Preparation of core/shell CaO@SiO2-SO3H as a novel and recyclable nanocatalyst for one-pot synthesize of dihydropyrano [2, 3-c] pyrazoles and tetrahydrobenzo [b] pyrans. Silicon 2022, 14, 1395–1406. [Google Scholar] [CrossRef]
- Sameri, F.; Mobinikhaledi, A.; Bodaghifard, M.A. Zn (II)-Schiff base covalently anchored to CaO@SiO2: A hybrid nanocatalyst for green synthesis of 4H-pyrans. Appl. Organomet. Chem. 2021, 35, e6394. [Google Scholar] [CrossRef]
- Sameri, F.; Mobinikhaledi, A.; Bodaghifard, M.A. High-efficient synthesis of 2-imino-2H-chromenes and dihydropyrano [c] chromenes using novel and green catalyst (CaO@SiO2@AIL). Res. Chem. Intermed. 2021, 47, 723–741. [Google Scholar] [CrossRef]
- Naeimi, H.; Mohammadi, S. Synthesis of 1H-Isochromenes, 4H-Chromenes and Orthoaminocarbonitrile Tetrahydronaphthalenes by CaMgFe2O4 Base Nanocatalyst. ChemistrySelect 2020, 5, 2627–2633. [Google Scholar] [CrossRef]
- Hamzehniya, M.; Mobinikhaledi, A.; Ahadi, N.; Sameri, F. Zn complexed on CaO coated with walnut husk extract as an efficient and reusable catalyst for the green synthesis of benzylpyrazolyl coumarin derivatives. React. Kinet. Mech. Catal. 2022, 135, 897–914. [Google Scholar] [CrossRef]
- Mosaddegh, E.; Hassankhani, A. Preparation and characterization of nano-CaO based on eggshell waste: Novel and green catalytic approach to highly efficient synthesis of pyrano [4, 3-b] pyrans. Chin. J. Catal. 2014, 35, 351–356. [Google Scholar] [CrossRef]
- Mosaddegh, E.; Hassankhani, A. Preparation, characterization, and catalytic activity of Ca2CuO3/CaCu2O3/CaO nanocomposite as a novel and bio-derived mixed metal oxide catalyst in the green synthesis of 2H-indazolo [2, 1-b] phthalazine-triones. Catal. Commun. 2015, 71, 65–69. [Google Scholar] [CrossRef]
- Khaledi, S.; Rajabi, M.; Momeni, A.R.; Samimi, H.A.; Albadi, J. Preparation and characterization of Ca-modified Co/Al2O3 and its catalytic application in the one-pot synthesis of 4H-pyrans. Res. Chem. Intermed. 2020, 46, 3109–3123. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Sharma, N.; Sharma, S.; Paul, S. Waste Chicken eggshell-derived CaO based magnetic solid base catalysts for the one-Pot synthesis of Tetrahydro-4H-chromenes and Benzopyranopyrimidines. Catal. Lett. 2024, 154, 532–552. [Google Scholar] [CrossRef]
- Grasa, G.; Martínez, I.; Diego, M.E.; Abanades, J.C. Determination of CaO carbonation kinetics under recarbonation conditions. Energy Fuels 2014, 28, 4033–4042. [Google Scholar] [CrossRef]
- Rong, N.; Wang, Q.; Fang, M.; Cheng, L.; Luo, Z.; Cen, K. Steam hydration reactivation of CaO-based sorbent in cyclic carbonation/calcination for CO2 capture. Energy Fuels 2013, 27, 5332–5340. [Google Scholar] [CrossRef]
- Woranuch, W.; Ngaosuwan, K.; Kiatkittipong, W.; Wongsawaeng, D.; Appamana, W.; Powell, J.; Assabumrungrat, S. Fine-tuned fabrication parameters of CaO catalyst pellets for transesterification of palm oil to biodiesel. Fuel 2022, 323, 124356. [Google Scholar] [CrossRef]
- Mierczynski, P.; Ciesielski, R.; Kedziora, A.; Maniukiewicz, W.; Shtyka, O.; Kubicki, J.; Maniecki, T.P. Biodiesel production on MgO, CaO, SrO and BaO oxides supported on (SrO)(Al2O3) mixed oxide. Catal. Lett. 2015, 145, 1196–1205. [Google Scholar] [CrossRef]
- Capaldo, L.; Wen, Z.; Noel, T. A field guide to flow chemistry for synthetic organic chemists. Chem. Sci. 2023, 14, 4230–4247. [Google Scholar] [CrossRef]
- Porta, R.; Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev. 2016, 20, 2–25. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 2018, 6, 32–34. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green chemistry metrics with special reference to green analytical chemistry. Molecules 2015, 20, 10928–10946. [Google Scholar] [CrossRef]
- Besson, R.; Vargas, M.R.; Favergeon, L. CO2 adsorption on calcium oxide: An atomic-scale simulation study. Surf. Sci. 2012, 606, 490–495. [Google Scholar] [CrossRef]
- Solis, B.H.; Cui, Y.; Weng, X.; Seifert, J.; Schauermann, S.; Sauer, J.; Freund, H.J. Initial stages of CO2 adsorption on CaO: A combined experimental and computational study. Phys. Chem. Chem. Phys. 2017, 19, 4231–4242. [Google Scholar] [CrossRef] [PubMed]
- Omodolor, I.S.; Otor, H.O.; Andonegui, J.A.; Allen, B.J.; Alba-Rubio, A.C. Dual-function materials for CO2 capture and conversion: A review. Ind. Eng. Chem. Res. 2020, 59, 17612–17631. [Google Scholar] [CrossRef]
- Sievers, C.; Noda, Y.; Qi, L.; Albuquerque, E.M.; Rioux, R.M.; Scott, S.L. Phenomena affecting catalytic reactions at solid–liquid interfaces. ACS Catal. 2016, 6, 8286–8307. [Google Scholar] [CrossRef]
- Santoro, S.; Kozhushkov, S.I.; Ackermann, L.; Vaccaro, L. Heterogeneous catalytic approaches in C–H activation reactions. Green Chem. 2016, 18, 3471–3493. [Google Scholar] [CrossRef]
Synthesis Method | Avg. Particle Size (nm) | BET Surface Area (mÂ2/g) | Basic Site Density (mmol/g) | Ref. |
---|---|---|---|---|
Sol–gel | 30 | 95 | 1.2 | [35] |
Co-precipitation | 45 | 80 | 1 | [37] |
Bio-waste (eggshell) | 25 | 100 | 1.4 | [39] |
Hydrothermal | 40 | 85 | 1.1 | [40] |
Combustion | 35 | 90 | 1.3 | [42] |
Reaction Family (3-Component MCR) | Substrate Activation | Key Bond-Forming Step | Role of O2−/Ca2+ | Typical Conditions (Solvent/Energy/Load/Time) | Common Limitations/Notes | Ref. |
---|---|---|---|---|---|---|
Knoevenagel condensation (Aldehyde + active methylene) | O2− deprotonates CH-acid; Ca2+ activates aldehyde carbonyl | C–C via nucleophilic addition to Ca2+-polarized carbonyl; dehydration | O2− = base; Ca2+ = Lewis acid/TS organizer | EtOH or solvent-free; rt–80 °C, MW/US; 5–10 mol% CaO; 10–60 min | Acid-sensitive substrates; CaO carbonation; steric hindrance slows | [53] |
Biginelli (Aldehyde + β-ketoester + urea/thiourea) | Ca2+ activates aldehyde; O2− enolizes β-ketoester and urea | Knoevenagel adduct + nucleophilic addition → cyclization | Dual activation: Ca2+ = carbonyl template; O2− = enolate/enamine | EtOH, EtOH/H2O or solvent-free; 80–120 °C or MW; 5–15 mol% CaO; 20–90 min | Electron-poor aldehydes slower; thiourea needs dry medium | [54] |
Hantzsch (Aldehyde + β-ketoester + NH3/amine) → 1,4-DHP | O2− promotes enamine formation; Ca2+ activates aldehyde | Knoevenagel + Michael/aldol → cyclization → tautomerization | O2− = enolization; Ca2+ = carbonyl activation | EtOH or AcOEt; 60–100 °C or MW; 5–10 mol% CaO; 30–120 min | Primary amines may over-react; chelators can poison Ca2+ | [55] |
2-Amino-4H-chromene (Aldehyde + malononitrile + phenol/dimedone) | O2− forms malononitrile carbanion/enolate; Ca2+ activates aldehyde | Knoevenagel → Michael by enolate/phenoxide → O-cyclization | O2− = nucleophile generation; Ca2+ = electrophile alignment | EtOH/H2O or solvent-free; rt–90 °C or MW; 5–12 mol% CaO; 10–90 min | Phenols with EWGs sluggish; over-basic media can polymerize | [56] |
Imidazo [1,2-a]pyridines (Aldehyde + 2-aminopyridine + CH-acid donor) | Ca2+ coordinates aldehyde/imine; O2− deprotonates CH-acid | C–C to imine intermediate → N-cyclization → aromatization | Dual site activation; balanced basicity for imine/ring closure | EtOH, MeCN, or neat; 70–110 °C or MW; 5–15 mol% CaO; 30–120 min | Moisture suppresses imine; strong N-donors may poison Ca2+ | [57] |
Pyranopyran/annulated O-heterocycles (Knoevenagel → Michael → cyclization) | O2− promotes enolate/carbanion; Ca2+ activates carbonyls | Conjugate addition → hemiacetalization → cyclization | O2− = base steps; Ca2+ = Lewis-acid steps | EtOH/H2O or neat; 60–100 °C or MW/US; 5–12 mol% CaO; 20–120 min | Hindered enones slow; carbonate formation lowers activity | [58] |
Catalyst | Avg. Yield (%) | E-Factor | Recyclability (No. of Cycles) * | Reaction Time (min) | Reference |
---|---|---|---|---|---|
CaO NPs | 92 | 3.1 | 5 | 45 | [52] |
ZnO NPs | 85 | 4.5 | 3 | 60 | [92] |
TiO2 NPs | 78 | 5.2 | 2 | 75 | [93] |
MgO NPs | 88 | 3.8 | 4 | 55 | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Bharti, R.; Verma, M.; Sharma, R.; Charmier, A.J.; Sutradhar, M. Calcium Oxide Nanoparticles as Green Nanocatalysts in Multicomponent Heterocyclic Synthesis: Mechanisms, Metrics, and Future Directions. Catalysts 2025, 15, 970. https://doi.org/10.3390/catal15100970
Sharma S, Bharti R, Verma M, Sharma R, Charmier AJ, Sutradhar M. Calcium Oxide Nanoparticles as Green Nanocatalysts in Multicomponent Heterocyclic Synthesis: Mechanisms, Metrics, and Future Directions. Catalysts. 2025; 15(10):970. https://doi.org/10.3390/catal15100970
Chicago/Turabian StyleSharma, Surtipal, Ruchi Bharti, Monika Verma, Renu Sharma, Adília Januário Charmier, and Manas Sutradhar. 2025. "Calcium Oxide Nanoparticles as Green Nanocatalysts in Multicomponent Heterocyclic Synthesis: Mechanisms, Metrics, and Future Directions" Catalysts 15, no. 10: 970. https://doi.org/10.3390/catal15100970
APA StyleSharma, S., Bharti, R., Verma, M., Sharma, R., Charmier, A. J., & Sutradhar, M. (2025). Calcium Oxide Nanoparticles as Green Nanocatalysts in Multicomponent Heterocyclic Synthesis: Mechanisms, Metrics, and Future Directions. Catalysts, 15(10), 970. https://doi.org/10.3390/catal15100970