Efficient Photodegradation of Congo Red and Phenol Red in Wastewater Using Nanosized Cu-Polyoxometalate: A Promising UV-Active Catalyst for Environmental Treatment
Abstract
1. Introduction
2. Results and Discussions
2.1. Characterization of Cu-POM Cluster
2.2. Photocatalysis Investigations of Cu-POM
3. Mechanism of Photocatalytic Degradation
4. Comparison with Previous Studies
5. Experimental Methods
5.1. Synthesis of Nanosized Cu-POM
5.2. Cu-POM Characterization
5.3. Photocatalytic Degradation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akansha, K.; Yadav, A.N.; Kumar, M.; Chakraborty, D.; Sachan, S.G. Decolorization and degradation of reactive orange 16 by Bacillus stratosphericus SCA1007. Folia Microbiol. 2021, 67, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Hanafi, M.F.; Sapawe, N. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today Proc. 2020, 31, A141–A150. [Google Scholar] [CrossRef]
- Maafa, I.M.; Ali, M.A. Enhanced Organic Pollutant Removal Efficiency of Electrospun NiTiO3/TiO2-Decorated Carbon Nanofibers. Polymers 2022, 15, 109. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, Z.H.; Graimed, B.H.; Okab, A.A.; Alsunbuli, M.M.; Al-Husseiny, R.A. Construction of 3D flower-like Bi5O7I/Bi/Bi2WO6 heterostructure decorated NiFe2O4 nanoparticles for photocatalytic destruction of Levofloxacin in aqueous solution: Synergistic effect between S-scheme and SPR action. J. Photochem. Photobiol. A Chem. 2023, 441, 114734. [Google Scholar] [CrossRef]
- Thang, N.Q.; Sabbah, A.; Chen, L.-C.; Chen, K.-H.; Thi, C.M.; Van Viet, P. High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: A case study of Ag/g-C3N4/ZnO nanocomposite materials. Chemosphere 2021, 282, 130971. [Google Scholar] [CrossRef]
- Ren, J.; Lv, S.; Wang, S.; Bao, M.; Zhang, X.; Gao, Y.; Liu, Y.; Zhang, Z.; Zeng, L.; Ke, J. Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification. Sep. Purif. Technol. 2021, 274, 118973. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Jaikumar, V. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Pizzicato, B.; Pacifico, S.; Cayuela, D.; Mijas, G.; Riba-Moliner, M. Advancements in sustainable natural dyes for textile applications: A review. Molecules 2023, 28, 5954. [Google Scholar] [CrossRef]
- Lin, J.; Ye, W.; Xie, M.; Seo, D.H.; Luo, J.; Wan, Y.; Van der Bruggen, B. Environmental impacts and remediation of dye-containing wastewater. Nat. Rev. Earth Environ. 2023, 4, 785–803. [Google Scholar] [CrossRef]
- Islam, T.; Repon, M.R.; Islam, T.; Sarwar, Z.; Rahman, M.M. Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions. Environ. Sci. Pollut. Res. 2023, 30, 9207–9242. [Google Scholar] [CrossRef]
- Alamrani, N.A.; Al-Aoh, H.A.; Aljohani, M.M.H.; Bani-Atta, S.A.; Sobhi, M.; Khalid, M.S.; Darwish, A.A.A.; Keshk, A.A.; Abdelfattah, M.A.A.; Nadagouda, M.N. Wastewater Purification from Permanganate Ions by Sorption on the Ocimum basilicum Leaves Powder Modified by Zinc Chloride. J. Chem. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Mustafa, S.K.; Al-Aoh, H.A.; Bani-Atta, S.A.; Alrawashdeh, L.R.; Aljohani, M.M.; Darwish, A.; Al-Shehri, H.; Ahmad, M.A.; Al-Tweher, J.N.; Alfaidi, M. Enhance the adsorption behavior of methylene blue from wastewater by using ZnCl2 modified neem (Azadirachta indica) leaves powder. Desalination Water Treat. 2021, 209, 367–378. [Google Scholar] [CrossRef]
- A. Bani-Atta, S. Zinc chloride modification of sage leaves powder and its application as an adsorbent for KMnO4 removal from aqueous solutions. Mater. Res. Express 2020, 7, 095511. [Google Scholar] [CrossRef]
- Bani-Atta, S.A. Potassium permanganate dye removal from synthetic wastewater using a novel, low-cost adsorbent, modified from the powder of Foeniculum vulgare seeds. Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bani-Atta, S.A.; Al-Aoh, H.A.; Aljohani, M.M.H.; Keshk, A.A.; Al-Shehri, H.S.; Mustafa, S.K.; Alamrani, N.A.; Darwish, A.A.A.; Sobhi, M. Methylene Blue sorption by the chemically modified Ocimum basilicum leaves powder. Desalination Water Treat. 2021, 222, 237–245. [Google Scholar] [CrossRef]
- Bani-Atta, S.A.; Al-Aoh, H.A. Methylene blue dye elimination from synthetic wastewater by modified adsorbent produced from Foeniculum vulgare waste: Thermodynamic, equilibrium, and kinetic studies. Desalination Water Treat. 2024, 320, 100649. [Google Scholar] [CrossRef]
- Boudiaf, S.; Nasrallah, N.; Mellal, M.; Belhamdi, B.; Belabed, C.; Djilali, M.; Trari, M. Kinetic studies of Congo Red Photodegradation on the hetero-system CoAl2O4/ZnO with a stirred reactor under solar light. J. Environ. Chem. Eng. 2021, 9, 105572. [Google Scholar] [CrossRef]
- Khan, A.U.; Li, B.; Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Tahir, K.; Khan, S.; Nazir, S. A facile fabrication of silver/copper oxide nanocomposite: An innovative entry in photocatalytic and biomedical materials. Photodiagn Photodyn. 2020, 31, 101814. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. J. Mol. Liq. 2020, 309, 113094. [Google Scholar] [CrossRef]
- Yu, M.; Wang, J.; Tang, L.; Feng, C.; Liu, H.; Zhang, H.; Peng, B.; Chen, Z.; Xie, Q. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications. Water Res. 2020, 175, 115673. [Google Scholar] [CrossRef]
- Gao, Y.; Choudhari, M.; Such, G.K.; Ritchie, C. Polyoxometalates as chemically and structurally versatile components in self-assembled materials. Chem. Sci. 2021, 13, 2510–2527. [Google Scholar] [CrossRef] [PubMed]
- Aramesh, N.; Bagheri, A.R.; Zhang, Z.; Yadollahi, B.; Lee, H.K. Polyoxometalate-based materials against environmental pollutants: A review. Coord. Chem. Rev. 2024, 507, 215767. [Google Scholar] [CrossRef]
- Murmu, G.; Panigrahi, T.H.; Saha, S. Recent advances in the development of polyoxometalates and their composites for the degradation of toxic chemical dyes. Prog. Solid State Chem. 2024, 76, 100489. [Google Scholar] [CrossRef]
- Bani-Atta, S.A.; Darwish, A.A.A.; Shwashreh, L.; Alotaibi, F.A.; Al-Tweher, J.N.; Al-Aoh, H.A.; El-Zaidia, E.F.M. Efficient Photocatalytic Degradation of Methylene Blue and Methyl Orange Using Calcium-Polyoxometalate Under Ultraviolet Irradiation. Process 2024, 12, 2769. [Google Scholar] [CrossRef]
- Zhu, L.; Huo, A.; Chen, Y.; Bai, X.; Cao, C.; Zheng, Y.; Guo, W. A ROS reservoir based on a polyoxometalate and metal-organic framework hybrid for efficient bacteria eradication and wound healing. Chem. Eng. J. 2023, 476, 146613. [Google Scholar] [CrossRef]
- Xing, C.; Ma, M.; Chang, J.; Ji, Z.; Wang, P.; Sun, L.; Li, S.; Li, M. Polyoxometalate anchored zinc oxide nanocomposite as a highly effective photocatalyst and bactericide for wastewater decontamination. Chem. Eng. J. 2023, 464, 142632. [Google Scholar] [CrossRef]
- Lan, J.; Wang, Y.; Huang, B.; Xiao, Z.; Wu, P. Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Adv. 2021, 3, 4646–4658. [Google Scholar] [CrossRef]
- Raabe, J.-C.; Esser, T.; Jameel, F.; Stein, M.; Albert, J.; Poller, M.J. Study on the incorporation of various elements into the Keggin lacunary-type phosphomolybdate [PMo9O34]9− and subsequent purification of the polyoxometalates by nanofiltration. Inorg. Chem. Front. 2023, 10, 4854–4868. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, X.; Khan, M.A.; Xia, M.; Lei, W.; Wang, F. Synthesis and characterisation of (Fe, Co, Ni)-polyoxometalates to degrade O, O-diethyl-S-(p-tolyl) phosphorothioate under visible light irradiation. Int. J. Environ. Anal. Chem. 2019, 100, 1376–1389. [Google Scholar] [CrossRef]
- Mirzaei, M.; Eshtiagh-Hosseini, H.; Hassanpoor, A. Different behavior of PDA as a preorganized ligand versus PCA ligand in constructing two inorganic-organic hybrid materials based on Keggin-type polyoxometalate. Inorganica Chim. Acta 2019, 484, 332–337. [Google Scholar] [CrossRef]
- Hanifah, Y.; Mohadi, R.; Mardianto; Ahmad, N.; Suheryanto; Lesbani, A. Photocatalytic of anionic dyes on Congo red with M2+/Al (M2+ = Ni, Mg, and Zn) layered double hydroxide intercalated polyoxometalate. Commun. Sci. Technol. 2023, 8, 43–49. [Google Scholar] [CrossRef]
- Yu, L.; Liu, Q.; Ding, S.; Yu, J.; Peng, S.; Zhang, J.; Jiang, C.; Yang, G. The assembly of polyoxometalate-graphene oxide composites for photocatalytic removal of organic dye in water. Appl. Surf. Sci. 2022, 602, 154095. [Google Scholar] [CrossRef]
- Dutta, S.; Misra, A.; Bose, S. Polyoxometalate nanocluster-infused triple IPN hydrogels for excellent microplastic removal from contaminated water: Detection, photodegradation, and upcycling. Nanoscale 2024, 16, 5188–5205. [Google Scholar] [CrossRef] [PubMed]
- Diachenko, O.; Kováč, J., Jr.; Dobrozhan, O.; Novák, P.; Kováč, J.; Skriniarova, J.; Opanasyuk, A. Structural and optical properties of CuO thin films synthesized using spray pyrolysis method. Coatings 2021, 11, 1392. [Google Scholar] [CrossRef]
- Patrut, A.; Bögge, H.; Forizs, E.; Rusu, D.; Lowy, D.A.; Margineanu, D.; Naumescu, A. Spectroscopic and crystal structure investigation of a new bismuth (III) containing polyoxometalate cluster. Rev. Roum. Chim. 2010, 55, 865–870. [Google Scholar]
- Li, S.; Zhang, J.; Cao, Y.; Yang, Y.; Xie, T.; Lin, Y. Visible light-assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer, and degradation mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129248. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, C.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y.; Yi, H.; Fu, Y.; Li, L. Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catal. 2021, 11, 13374–13396. [Google Scholar] [CrossRef]
- Yang, L.; Lei, J.; Fan, J.; Yuan, R.; Zheng, M.; Chen, J.; Dong, Q. The Intrinsic Charge Carrier Behaviors and Applications of Polyoxometalate Clusters Based Materials. Adv. Mater. 2021, 33, 2005019. [Google Scholar] [CrossRef]
- Liang, Z.; Yao, Y.; Wang, H. Recent advancements in polyoxometalate-functionalized fiber materials: A review. Nanotechnol. Rev. 2024, 13, 20230199. [Google Scholar] [CrossRef]
- Chang, Z.-H.; Chen, Y.-Z.; Zhang, Y.-C.; Wang, X.-L. Polyoxometalate-based metal–organic complexes and their derivatives as electrocatalysts for energy conversion in aqueous systems. CrystEngComm 2022, 24, 5675–5682. [Google Scholar] [CrossRef]
- Ong, B.C.; Lim, H.K.; Tay, C.Y.; Lim, T.-T.; Dong, Z. Polyoxometalates for bifunctional applications: Catalytic dye degradation and anticancer activity. Chemosphere 2022, 286, 131869. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.; Zeng, F.; Si, C.; Zhang, D.; Xu, W.; Shi, J. Advances in Polyoxometalates as Electron Mediators for Photocatalytic Dye Degradation. Int. J. Mol. Sci. 2023, 24, 15244. [Google Scholar] [CrossRef]
- Abdulnabi, W.A.; Ammar, S.H.; Kader, H.D.A. Assembling g-C3N4@phosphomolybdic acid/AgCl photocatalysts for aerobic photocatalytic degradation of organic pollutants. Inorg. Chem. Commun. 2023, 150, 110533. [Google Scholar] [CrossRef]
- Rasheed, S.; Batool, Z.; Intisar, A.; Riaz, S.; Shaheen, M.; Kousar, R. Enhanced photodegradation activity of cuprous oxide nanoparticles towards Congo red for water purification. Desalination Water Treat. 2021, 227, 330–337. [Google Scholar] [CrossRef]
- Arora, P.; Fermah, A.; Rajput, J.K.; Singh, H.; Badhan, J. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles. Environ. Sci. Pollut. Res. 2017, 24, 19546–19560. [Google Scholar] [CrossRef] [PubMed]
- Gadore, V.; Singh, A.K.; Mishra, S.R. Ahmaruzzaman RSM approach for process optimization of the photodegradation of congo red by a novel NiCo2S4/chitosan photocatalyst. Sci. Rep. 2024, 14, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Yuliasari, N.; Amri; Mohadi, R.; Elfita; Lesbani, A. Modification of pristine layered double hydroxide to form metal oxide composites as an anionic dye photodegradation catalysts. Commun. Sci. Technol. 2022, 7, 168–174. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, R. Polyoxometalate-Based Photocatalytic New Materials for the Treatment of Water Pollutants: Mechanism, Advances, and Challenges. Catalysts 2025, 15, 613. [Google Scholar] [CrossRef]
- Dong, Z.; Zeng, D.; Li, Z.; Chen, J.; Wang, Y.; Cao, X.; Yang, G.; Zhang, Z.; Liu, Y.; Yang, F. Polyoxometalate-encapsulated metal–organic frameworks for photocatalytic uranium isolation. Chem. Sci. 2024, 15, 19126–19135. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Yin, C.; Jiao, L.; Ding, L. WO3 nanocrystal prepared by self-assembly of phosphotungstic acid and dopamine for photocatalytic degradation of Congo red. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 572, 147–151. [Google Scholar] [CrossRef]
- Duan, H.; Yin, L.; Chen, T.; Qi, D.; Zhang, D. A “metal ions-induced poisoning behavior of biomolecules” inspired polymeric probe for Cu2+ selective detection on basis of coil to helix conformation transition. Eur. Polym. J. 2022, 167, 111070. [Google Scholar] [CrossRef]
- Han, S.; Feng, J.; Ji, X.; Li, C.; Wang, X.; Tian, Y.; Sun, M. Nano-MoO3 for highly selective Enrich. of polycyclic aromatic hydrocarbons in in-tube solid-phase microextraction. J. Sep. Sci. 2019, 42, 3363–3371. [Google Scholar] [CrossRef]
Catalytic | Dye | PCE% | kapp (min−1) | Reference |
---|---|---|---|---|
Cu-POM | CR | 58.1 | 0.00484 | Current work |
Cu-POM | PR | 64.6 | 0.00579 | Current work |
Mg/Al-TiO2 | CR | 73 | [47] | |
ZnAl-[SiW12O40] | CR | 66 | [31] | |
ZnAl-[PW12O40] | CR | 73 | [31] | |
MgAl-[PW12O40] | CR | 73 | [31] | |
WO3 nanocrystal | CR | 60 | [50] | |
CoV POMs/PMS | PR | 70.3 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bani-Atta, S.A.; Darwish, A.A.A.; Alatawi, N.M.; Alkhathami, N.D.; Al-Tweher, J.N.; El-Zaidia, E.F.M. Efficient Photodegradation of Congo Red and Phenol Red in Wastewater Using Nanosized Cu-Polyoxometalate: A Promising UV-Active Catalyst for Environmental Treatment. Catalysts 2025, 15, 920. https://doi.org/10.3390/catal15100920
Bani-Atta SA, Darwish AAA, Alatawi NM, Alkhathami ND, Al-Tweher JN, El-Zaidia EFM. Efficient Photodegradation of Congo Red and Phenol Red in Wastewater Using Nanosized Cu-Polyoxometalate: A Promising UV-Active Catalyst for Environmental Treatment. Catalysts. 2025; 15(10):920. https://doi.org/10.3390/catal15100920
Chicago/Turabian StyleBani-Atta, Suhair A., Ahmed Ali A. Darwish, Nada M. Alatawi, Nada D. Alkhathami, Jozaa N. Al-Tweher, and Eman F. M. El-Zaidia. 2025. "Efficient Photodegradation of Congo Red and Phenol Red in Wastewater Using Nanosized Cu-Polyoxometalate: A Promising UV-Active Catalyst for Environmental Treatment" Catalysts 15, no. 10: 920. https://doi.org/10.3390/catal15100920
APA StyleBani-Atta, S. A., Darwish, A. A. A., Alatawi, N. M., Alkhathami, N. D., Al-Tweher, J. N., & El-Zaidia, E. F. M. (2025). Efficient Photodegradation of Congo Red and Phenol Red in Wastewater Using Nanosized Cu-Polyoxometalate: A Promising UV-Active Catalyst for Environmental Treatment. Catalysts, 15(10), 920. https://doi.org/10.3390/catal15100920