Modification of NiSe2 Nanoparticles by ZIF-8-Derived NC for Boosting H2O2 Production from Electrochemical Oxygen Reduction in Acidic Media
Abstract
1. Introduction
2. Results and Discussion
2.1. Material Characterizations
2.2. Electrocatalytic Performance
2.3. Electrocatalytic Mechanism on NiSe2@NC
3. Materials and Methods
3.1. Reagent and Chemicals
3.2. Material Synthesis
3.2.1. Synthesis of ZIF-8
3.2.2. Synthesis of NiSe2@NC
3.2.3. Synthesis of NC and NiSe2
3.3. Materials Characterization
3.4. Electrochemical Measurements
3.5. Computational Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Y.; Deng, D.; Xu, L.; Li, M.; Chen, H.; Wu, Z.; Zhang, S. Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction: From Catalyst Design to Device Setup. Nano-Micro Lett. 2023, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Tan, H.; Liu, X.; Hou, F.; Liang, J. Perspectives on Carbon-Based Catalysts for the Two-Electron Oxygen Reduction Reaction for Electrochemical Synthesis of Hydrogen Peroxide: A Minireview. Energy Fuels 2023, 37, 17863–17874. [Google Scholar] [CrossRef]
- Jung, E.; Shin, H.; Hooch Antink, W.; Sung, Y.-E.; Hyeon, T. Recent Advances in Electrochemical Oxygen Reduction to H2O2: Catalyst and Cell Design. ACS Energy Lett. 2020, 5, 1881–1892. [Google Scholar] [CrossRef]
- Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. Adv. Sci. 2021, 8, 2100076. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Sun, J.; Dou, S.; Sun, J. Non-precious metal electrocatalysts for two-electron oxygen electrochemistry: Mechanisms, progress, and outlooks. J. Energy Chem. 2022, 69, 54–69. [Google Scholar] [CrossRef]
- Ali, I.; Van Eyck, K.; De Laet, S.; Dewil, R. Recent advances in carbonaceous catalyst design for the in situ production of H2O2 via two-electron oxygen reduction. Chemosphere 2022, 308, 136127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, L.; Gu, F.; Wu, J.; Gao, J.; Zhang, Y.-C.; Zhu, X.-D. Recent advances in single-atom catalysts for acidic electrochemical oxygen reduction to hydrogen peroxide. Nano Energy 2023, 116, 108798. [Google Scholar] [CrossRef]
- Liu, K.; Li, F.; Zhan, H.; Zhan, S. Recent progress in two-dimensional materials for generation of hydrogen peroxide by two-electron oxygen reduction reaction. Mater. Today Energy 2024, 40, 101500. [Google Scholar] [CrossRef]
- Du, M.; Li, D.; Liu, S.; Yan, J. Practical Classification of Catalysts for Oxygen Reduction Reactions: Optimization Strategies and Mechanistic Analysis. Adv. Funct. Mater. 2023, 33, 2301527. [Google Scholar] [CrossRef]
- Bhuvanendran, N.; Ravichandran, S.; Xu, Q.; Maiyalagan, T.; Su, H. A quick guide to the assessment of key electrochemical performance indicators for the oxygen reduction reaction: A comprehensive review. Int. J. Hydrog. Energy 2022, 47, 7113–7138. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Zhong, Y.; Ran, R.; Shao, Z. Ruddlesden–Popper perovskites in electrocatalysis. Mater. Horiz. 2020, 7, 2519–2565. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.-K.; Zhang, C.; Cheng, Z.; Chen, W.; McHugh, E.A.; Carter, R.A.; Yakobson, B.I.; Tour, J.M. Hydrogen Peroxide Generation with 100% Faradaic Efficiency on Metal-Free Carbon Black. ACS Catal. 2021, 11, 2454–2459. [Google Scholar] [CrossRef]
- Liu, M.; Su, H.; Cheng, W.; Yu, F.; Li, Y.; Zhou, W.; Zhang, H.; Sun, X.; Zhang, X.; Wei, S.; et al. Synergetic Dual-Ion Centers Boosting Metal Organic Framework Alloy Catalysts toward Efficient Two Electron Oxygen Reduction. Small 2022, 18, 2202248. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhang, N.; Lai, F.; Zhang, L.; Wu, Z.; Li, H.; Zhu, H.; Liu, T. Lattice Strained B-Doped Ni Nanoparticles for Efficient Electrochemical H2O2 Synthesis. Small 2022, 18, 2203510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Q.; Guo, A.; Wang, X.; Wang, Y.; Long, Y.; Fan, G. Carbon-nanosheet-driven spontaneous deposition of Au nanoparticles for efficient electrochemical utilizations toward H2O2 generation and detection. Chem. Eng. J. 2022, 445, 136586. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Xia, C.; Wang, H.-F.; Tang, C. Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 2022, 67, 432–450. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, W.; Guo, K.; Xiong, M.; Zhang, J.; Lu, X. A Pentagonal Defect-Rich Metal-Free Carbon Electrocatalyst for Boosting Acidic O2 Reduction to H2O2 Production. J. Am. Chem. Soc. 2023, 145, 11589–11598. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, J.; Luo, G.; Wang, D. Cobalt atoms anchored on nitrogen-doped hollow carbon spheres for efficient electrocatalysis of oxygen reduction to H2O2. J. Phys. Energy 2023, 5, 025001. [Google Scholar] [CrossRef]
- Cui, X.; Zhong, L.; Zhao, X.; Xie, J.; He, D.; Yang, X.; Lin, K.; Wang, H.; Niu, L. Ultrafine Co nanoparticles confined in nitrogen-doped carbon toward two-electron oxygen reduction reaction for H2O2 electrosynthesis in acidic media. Chin. Chem. Lett. 2023, 34, 108291. [Google Scholar] [CrossRef]
- Sui, W.; Li, W.; Zhang, Z.; Wu, W.; Xu, Z.; Wang, Y. Efficient and durable electrochemical oxygen reduction to H2O2 in acidic media assisted through catalyst layer design. J. Power Sources 2023, 556, 232438. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Liu, Z.; Li, Z.; Zhang, T.; Cheng, Y.; Lei, L.; Yang, B.; Hou, Y. Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chin. Chem. Lett. 2024, 35, 108926. [Google Scholar] [CrossRef]
- Deng, Z.; Mostaghimi, A.H.B.; Gong, M.; Chen, N.; Siahrostami, S.; Wang, X. Pd 4d Orbital Overlapping Modulation on Au@Pd Nanowires for Efficient H2O2 Production. J. Am. Chem. Soc. 2024, 146, 2816–2823. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Chen, M.; Zhang, C.; Zhang, J.; Liu, W.; Huang, X.; Li, J.; Feng, G.; Wang, D. Modulating the Oxygen Reduction Selectivity in Pt or Pd Chalcogenides via the Ensemble Effect and Electronic Effect. ACS Appl. Mater. Interfaces 2023, 15, 31375–31383. [Google Scholar] [CrossRef]
- Li, H.; Wen, P.; Itanze, D.S.; Hood, Z.D.; Adhikari, S.; Lu, C.; Ma, X.; Dun, C.; Jiang, L.; Carroll, D.L.; et al. Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. Nat. Commun. 2020, 11, 3928. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhu, X.; Wang, Y.; Li, Y. 1T′-MoTe2 monolayer: A promising two-dimensional catalyst for the electrochemical production of hydrogen peroxide. Chin. J. Catal. 2022, 43, 1520–1526. [Google Scholar] [CrossRef]
- Sheng, H.; Hermes, E.D.; Yang, X.; Ying, D.; Janes, A.N.; Li, W.; Schmidt, J.R.; Jin, S. Electrocatalytic Production of H2O2 by Selective Oxygen Reduction Using Earth-Abundant Cobalt Pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442. [Google Scholar] [CrossRef]
- Yan, L.; Cheng, X.; Wang, Y.; Wang, Z.; Zheng, L.; Yan, Y.; Lu, Y.; Sun, S.; Qiu, W.; Chen, G. Exsolved Co3O4 with tunable oxygen vacancies for electrocatalytic H2O2 production. Mater. Today Energy 2022, 24, 100931. [Google Scholar] [CrossRef]
- Han, C.-D.; Zhang, Y.-C.; Zhang, Q.; Wu, J.-T.; Gao, J.; Zou, J.-J.; Zhu, X.-D. NaBH4-induced phase transition of CoSe2 with abundant Se deficiency for acidic oxygen reduction to hydrogen peroxide. Rare Metals 2023, 43, 500–510. [Google Scholar] [CrossRef]
- Sheng, H.; Janes, A.N.; Ross, R.D.; Kaiman, D.; Huang, J.; Song, B.; Schmidt, J.R.; Jin, S. Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 2020, 13, 4189–4203. [Google Scholar] [CrossRef]
- Wang, Y.N.; Han, C.D.; Ma, L.; Duan, T.G.; Du, Y.; Wu, J.T.; Zou, J.J.; Gao, J.; Zhu, X.D.; Zhang, Y.C. Recent Progress of Transition Metal Selenides for Electrochemical Oxygen Reduction to Hydrogen Peroxide: From Catalyst Design to Electrolyzers Application. Small 2024, 21, 2309448. [Google Scholar] [CrossRef]
- Cao, W.; Shen, Q.; Men, D.; Ouyang, B.; Sun, Y.; Xu, K. Phase engineering of iron group transition metal selenides for water splitting. Mat. Chem. Front. 2023, 7, 4865–4879. [Google Scholar] [CrossRef]
- Gong, Y.; Li, Y.; Li, Y.; Liu, M.; Bai, Y.; Wu, C. Metal Selenides Anode Materials for Sodium Ion Batteries: Synthesis, Modification, and Application. Small 2022, 19, 2206194. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Xu, G.; Xiong, B.; Chen, L.; Shi, J. Anion-tuned nickel chalcogenides electrocatalysts for efficient 2e− ORR towards H2O2 production in acidic media. Nano Res. 2022, 16, 4729–4735. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Pang, X.; Tian, Z.; Wang, S.; Feng, L. Fe-doped NiSe2 nanorods for enhanced urea electrolysis of hydrogen generation. Electrochim. Acta 2023, 440, 141724. [Google Scholar] [CrossRef]
- Fan, S.; Li, G.; Yang, G.; Guo, X.; Niu, X. NiSe2 nanooctahedra as anodes for high-performance sodium-ion batteries. New J. Chem. 2019, 43, 12858–12864. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, J.; Yue, L.; Dong, K.; Xu, Z.; Li, T.; Liu, Q.; Luo, Y.; Liu, Y.; Gao, S.; et al. CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: An efficient catalyst for H2O2 electrosynthesis in acidic media. J. Mater. Chem. A 2021, 9, 21703–21707. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, J.; Yue, L.; Xu, Z.; Dong, K.; Liu, Q.; Luo, Y.; Li, T.; Cheng, X.; Cui, G.; et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res. 2021, 15, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, H.; Jiang, S.P.; Shao, Z. Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 2021, 1, 460–481. [Google Scholar] [CrossRef]
- Guo, R.; Shi, W.; Liu, W.; Yang, X.; Xie, Y.; Yang, T.; Xiao, J. Ultralow noble metals doping enables metal-organic framework derived Ni(OH)2 nanocages as efficient water oxidation electrocatalysts. Chem. Eng. J. 2022, 429, 132478. [Google Scholar] [CrossRef]
- Qu, J.; Bai, Y.; Li, X.; Song, K.; Zhang, S.; Wang, X.; Wang, X.; Dai, S. Rational design of NiSe2@rGO nanocomposites for advanced hybrid supercapacitors. J. Mater. Res. Technol. JMRT 2021, 15, 6155–6161. [Google Scholar] [CrossRef]
- Bai, J.; Ge, W.; Zhou, P.; Xu, P.; Wang, L.; Zhang, J.; Jiang, X.; Li, X.; Zhou, Q.; Deng, Y. Precise constructed atomically dispersed Fe/Ni sites on porous nitrogen-doped carbon for oxygen reduction. J. Colloid Interface Sci. 2022, 616, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Yang, G.; Zhao, Y.; Yuan, G.-Q.; Ye, J.-S.; Liu, H.-Y.; Xiao, X.-Y. Porous carbon polyhedrons with exclusive Metal-NX moieties for efficient oxygen reduction reaction. Int. J. Hydrogen Energy 2021, 46, 39882–39891. [Google Scholar] [CrossRef]
- Wu, Y.; Ge, L.; Veksha, A.; Lisak, G. Cobalt and nitrogen co-doped porous carbon/carbon nanotube hybrids anchored with nickel nanoparticles as high-performance electrocatalysts for oxygen reduction reactions. Nanoscale 2020, 12, 13028–13033. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Li, Q.; Zhang, Z.; Zeng, Q.; Liu, D.; Zhao, L.; Liu, Y.; Li, Y.; Zhang, Y.; Ji, K.; et al. Coupling MoSe2 with Non-Stoichiometry Ni0.85Se in Carbon Hollow Nanoflowers for Efficient Electrocatalytic Synergistic Effect on Li-O2 Batteries. Small 2023, 20, 2304882. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yun, S.; Sun, M.; Wang, X.; Zhang, L.; Dang, J.; Yang, C.; Yang, J.; Dang, C.; Yuan, S. Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media. J. Colloid Interface Sci. 2021, 604, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wei, L.; Shen, J. Metal-free catalyst for efficient pH-universal oxygen reduction electrocatalysis in microbial fuel cell. J. Electroanal. Chem. 2022, 911, 116233. [Google Scholar] [CrossRef]
- Liang, Z.; Tu, H.; Zhang, K.; Kong, Z.; Huang, M.; Xu, D.; Liu, S.; Wu, Y.; Hao, X. Self-supporting NiSe2@BCNNTs electrode for High-Performance sodium ion batteries. Chem. Eng. J. 2022, 437, 135421. [Google Scholar] [CrossRef]
- Xiao, X.; Ni, L.; Chen, G.; Ai, G.; Li, J.; Qiu, T.; Liu, X. Two-dimensional NiSe2 nanosheets on carbon fiber cloth for high-performance lithium-ion batteries. J. Alloy. Compd. 2020, 821, 153218. [Google Scholar] [CrossRef]
- Ding, L.; Zhao, J.; Bao, Z.; Zhang, S.; Shi, H.; Liu, J.; Wang, G.; Peng, X.; Zhong, X.; Wang, J. Synchronous generation of green oxidants H2O2 and O3 by using a heterojunction bifunctional ZnO/ZnS@C electrocatalyst. J. Mater. Chem. A 2023, 11, 3454–3463. [Google Scholar] [CrossRef]
- Mohamed, I.M.A.; Kanagaraj, P.; Yasin, A.S.; Iqbal, W.; Liu, C. Electrochemical impedance investigation of urea oxidation in alkaline media based on electrospun nanofibers towards the technology of direct-urea fuel cells. J. Alloy. Compd. 2020, 816, 152513. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Shen, T.; Li, Z.; Chen, K.; Lu, Y.; Zhang, J.; Wang, D. Efficient Electrochemical Production of H2O2 on Hollow N-Doped Carbon Nanospheres with Abundant Micropores. ACS Appl. Mater. Interfaces 2021, 13, 29551–29557. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.L.; Yue, M.F.; Chen, H.Q.; Ze, H.J.; Wang, Y.H.; Dong, J.C.; Tian, Z.Q.; Fang, P.P.; Li, J.F. Exploring the Effect of Pd on the Oxygen Reduction Performance of Pt by In Situ Raman Spectroscopy. Anal. Chem. 2022, 94, 4779–4786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, H.; Liu, Z.; Yin, K.; Wang, Z.; Huang, H.; Liu, Y.; Kang, Z.; Chen, Z. Efficient hydrogen peroxide production enabled by exploring layered metal telluride as two electron oxygen reduction reaction electrocatalyst. J. Energy Chem. 2023, 87, 247–255. [Google Scholar] [CrossRef]
- Jiang, C.; Fei, Y.-F.; Xu, W.; Bao, Z.; Shao, Y.; Zhang, S.; Hu, Z.-T.; Wang, J. Synergistic effects of Bi2O3 and Ta2O5 for efficient electrochemical production of H2O2. Appl. Catal. B Environ. 2023, 334, 122867. [Google Scholar] [CrossRef]
- Wang, Y.M.; Huang, H.; Wu, J.; Yang, H.Y.; Kang, Z.H.; Liu, Y.; Wang, Z.W.; Menezes, P.W.; Chen, Z.L. Charge-Polarized Selenium Vacancy in Nickel Diselenide Enabling Efficient and Stable Electrocatalytic Conversion of Oxygen to Hydrogen Peroxide. Adv. Sci. 2023, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hou, M.; Chen, Z.; Hao, W.; Pan, X.; Yang, H.; Cen, W.; Liu, Y.; Huang, H.; Menezes, P.W.; et al. Composition Engineering of Amorphous Nickel Boride Nanoarchitectures Enabling Highly Efficient Electrosynthesis of Hydrogen Peroxide. Adv. Mater. 2022, 34, 2202995. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.D.; Sheng, H.; Parihar, A.; Huang, J.; Jin, S. Compositionally Tuned Trimetallic Thiospinel Catalysts for Enhanced Electrosynthesis of Hydrogen Peroxide and Built-In Hydroxyl Radical Generation. ACS Catal. 2021, 11, 12643–12650. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Zhang, C.; Feng, Y.; Feng, H.; Zhu, S.; Hu, J. High-efficiency oxygen reduction by late transition metal oxides to produce H2O2. J. Mater. Chem. A 2024, 12, 6123–6133. [Google Scholar] [CrossRef]
- Xie, J.; Zhong, L.; Yang, X.; He, D.; Lin, K.; Chen, X.; Wang, H.; Gan, S.; Niu, L. Phosphorous and selenium tuning Co-based non-precious catalysts for electrosynthesis of H2O2 in acidic media. Chin. Chem. Lett. 2024, 35, 108472. [Google Scholar] [CrossRef]
- Zheng, Y.R.; Hu, S.; Zhang, X.L.; Ju, H.; Wang, Z.; Tan, P.J.; Wu, R.; Gao, F.Y.; Zhuang, T.; Zheng, X.; et al. Black Phosphorous Mediates Surface Charge Redistribution of CoSe2 for Electrochemical H2O2 Production in Acidic Electrolytes. Adv. Mater. 2022, 34, 2205414. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Ding, H.; Chen, L.; Dong, J.; Yu, H.; Yan, S.; Wang, H. Modification of NiSe2 Nanoparticles by ZIF-8-Derived NC for Boosting H2O2 Production from Electrochemical Oxygen Reduction in Acidic Media. Catalysts 2024, 14, 364. https://doi.org/10.3390/catal14060364
Cheng Q, Ding H, Chen L, Dong J, Yu H, Yan S, Wang H. Modification of NiSe2 Nanoparticles by ZIF-8-Derived NC for Boosting H2O2 Production from Electrochemical Oxygen Reduction in Acidic Media. Catalysts. 2024; 14(6):364. https://doi.org/10.3390/catal14060364
Chicago/Turabian StyleCheng, Qiaoting, Hu Ding, Lang Chen, Jiatong Dong, Hao Yu, Shen Yan, and Hua Wang. 2024. "Modification of NiSe2 Nanoparticles by ZIF-8-Derived NC for Boosting H2O2 Production from Electrochemical Oxygen Reduction in Acidic Media" Catalysts 14, no. 6: 364. https://doi.org/10.3390/catal14060364
APA StyleCheng, Q., Ding, H., Chen, L., Dong, J., Yu, H., Yan, S., & Wang, H. (2024). Modification of NiSe2 Nanoparticles by ZIF-8-Derived NC for Boosting H2O2 Production from Electrochemical Oxygen Reduction in Acidic Media. Catalysts, 14(6), 364. https://doi.org/10.3390/catal14060364