Synthesis and Application of Catalytic Materials in Energy and Environment
Acknowledgments
Conflicts of Interest
References
- Yang, D.; Liu, X.; Zhao, W.; Yan, Q.; Song, F.; Wang, T.; Dai, Y.; Wan, X.; Zhou, C.; Yang, Y. A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals. EcoMat 2021, 3, e12159. [Google Scholar] [CrossRef]
- Qin, Y.; Li, Z.; Duan, Y.; Guo, J.; Zhao, M.; Tang, Z. Nanostructural engineering of metal-organic frameworks: Construction strategies and catalytic applications. Matter 2022, 5, 3260–3310. [Google Scholar] [CrossRef]
- Chen, Z.; Yun, S.; Wu, L.; Zhang, J.; Shi, X.; Wei, W.; Liu, Y.; Zheng, R.; Han, N.; Ni, B.-J. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy. Nano-Micro Lett. 2022, 15, 4. [Google Scholar] [CrossRef]
- Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shao, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 2018, 6, 19912–19933. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, S.-Y.; Guo, S. Recent progress on precious metal single atom materials for water splitting catalysis. SusMat 2021, 1, 194–210. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, J.; Xie, Y.; Wang, X.; Ma, K.; Tian, Z.; Zhang, Z.; Liao, Q.; Zheng, W.; Kang, Z.; et al. Dynamics of Both Active Phase and Catalysis Pathway for Spinel Water-Oxidation Catalysts. Adv. Funct. Mater. 2022, 32, 2207116. [Google Scholar] [CrossRef]
- Wang, Y.; Han, N.; Li, X.-L.; Wang, R.-Z.; Xing, L.-B. Novel Strategy of Constructing Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Efficient Photocatalysis in Water. ACS Appl. Mater. Interfaces 2022, 14, 45734–45741. [Google Scholar] [CrossRef]
- Liu, P.; Han, N.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. High-Quality Ruddlesden–Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells. Adv. Mater. 2021, 33, 2002582. [Google Scholar] [CrossRef]
- Ma, C.-Q.; Li, X.-L.; Han, N.; Wang, Y.; Wang, R.-Z.; Yu, S.; Wang, Y.-B.; Xing, L.-B. A novel polyelectrolyte-based artificial light-harvesting system for photocatalysis of cross-dehydrogenation coupling. J. Mater. Chem. A 2022, 10, 16390–16395. [Google Scholar] [CrossRef]
- Zhao, S.; Li, H.; Wang, B.; Yang, X.; Peng, Y.; Du, H.; Zhang, Y.; Han, D.; Li, Z. Recent advances on syngas conversion targeting light olefins. Fuel 2022, 321, 124124. [Google Scholar] [CrossRef]
- Wang, E.; Li, Q.; Song, M.; Yang, F.; Chen, Y.; Wang, G.; Bing, L.; Zhang, Q.; Wang, F.; Han, D. Melamine foam-supported CoMo catalysts with three-dimensional porous structure for effective hydrodesulfurization of thiophene. Fuel 2023, 337, 12722. [Google Scholar] [CrossRef]
- Han, N.; Feng, S.; Liang, Y.; Wang, J.; Zhang, W.; Guo, X.; Ma, Q.; Liu, Q.; Guo, W.; Zhou, Z.; et al. Achieving efficient electrocatalytic oxygen evolution in acidic media on yttrium ruthenate pyrochlore through cobalt incorporation. Adv. Funct. Mater. 2023, 2208399. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, M.; Wang, L.; Fei, Y.; Wang, S.; Núñez-Delgado, A.; Bokhari, A.; Race, M.; Khataee, A.; Jaromír Klemeš, J.; et al. Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites. Chem. Eng. J. 2022, 431, 134104. [Google Scholar] [CrossRef]
- Han, N.; Wang, S.; Rana, A.K.; Asif, S.; Klemeš, J.J.; Bokhari, A.; Long, J.; Thakur, V.K.; Zhao, X. Rational design of boron nitride with different dimensionalities for sustainable applications. Renew. Sustain. Energy Rev. 2022, 170, 11291. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, W.; Jia, F.; Fu, H.; Liu, T.; Zhang, X.; Liu, B.; Núñez-Delgado, A.; Han, N. Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation. J. Environ. Manag. 2021, 292, 112763. [Google Scholar] [CrossRef]
- Han, N.; Wang, S.; Yao, Z.; Zhang, W.; Zhang, X.; Zeng, L.; Chen, R. Superior three-dimensional perovskite catalyst for catalytic oxidation. EcoMat 2020, 2, e12044. [Google Scholar] [CrossRef]
- Li, Q.; Fu, S.; Wang, X.; Wang, L.; Liu, X.; Gao, Y.; Li, Q.; Wang, W. Electrochemical and Photoelectrochemical Detection of Hydrogen Peroxide Using Cu2O/Cu Nanowires Decorated with TiO2−x Deriving from MXenes. ACS Appl. Mater. Interfaces 2022, 14, 57471–57480. [Google Scholar] [CrossRef]
- Han, N.; Guo, X.; Cheng, J.; Liu, P.; Zhang, S.; Huang, S.; Rowles, M.R.; Fransaer, J.; Liu, S. Inhibiting in situ phase transition in Ruddlesden-Popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter 2021, 4, 1720–1734. [Google Scholar]
- Zhang, M.; Han, N.; Fei, Y.; Liu, J.; Xing, L.; Núñez-Delgado, A.; Jiang, M.; Liu, S. TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater. J. Environ. Manag. 2021, 297, 11331. [Google Scholar] [CrossRef]
- Han, N.; Feng, S.; Guo, W.; Mora, O.M.; Zhao, X.; Zhang, W.; Xie, S.; Zhou, Z.; Liu, Z.; Liu, Q.; et al. Rational design of Ruddlesden–Popper perovskite electrocatalyst for oxygen reduction to hydrogen peroxide. SusMat 2022, 2, 456–465. [Google Scholar] [CrossRef]
- Lu, H.; Cao, F.; Huang, X.; Yang, H. Performance and Mechanism of Hydrothermally Synthesized MoS2 on Copper Dissolution. Catalysts 2023, 13, 147. [Google Scholar] [CrossRef]
- Dourari, M.; Tarchoun, A.F.; Trache, D.; Abdelaziz, A.; Bekhouche, S.; Harrat, A.; Boukeciat, H.; Matmat, N. Unraveling the Effect of MgAl/CuO Nanothermite on the Characteristics and Thermo-Catalytic Decomposition of Nanoenergetic Formulation Based on Nanostructured Nitrocellulose and Hydrazinium Nitro-Triazolone. Catalysts 2022, 12, 1573. [Google Scholar] [CrossRef]
- Do, L.T.; Nguyen-Phu, H.; Pham, N.N.; Jeong, D.H.; Shin, E.W. Highly Dispersed Nickel Nanoparticles on Hierarchically Ordered Macroporous Al2O3 and Its Catalytic Performance for Steam Reforming of 1-Methyl Naphthalene. Catalysts 2022, 12, 1542. [Google Scholar] [CrossRef]
- Ge, D.; Liao, L.; Li, M.; Yin, Y. Metal-Organic Framework-Derived Atomically Dispersed Co-N-C Electrocatalyst for Efficient Oxygen Reduction Reaction. Catalysts 2022, 12, 1462. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Wang, Q.; Sun, K.; Lee, C.; Cao, Y.; Si, W.; Wei, H.; Li, Z.; Wang, F. The Biomass of Pig-Blood-Derived Carbon as a Novel Electrode Material for Hydrogen Peroxide Electrochemical Sensing. Catalysts 2022, 12, 1438. [Google Scholar] [CrossRef]
- Xu, Z.; Hao, M.; Liu, X.; Ma, J.; Wang, L.; Li, C.; Wang, W. Co(OH)2 Nanoflowers Decorate NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Catalysts 2022, 12, 1417. [Google Scholar] [CrossRef]
- Yu, L.; Xu, W.; Liu, H.; Bao, Y. Titanium Dioxide-Reduced Graphene Oxide Composites for Photocatalytic Degradation of Dyes in Water. Catalysts 2022, 12, 1340. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Han, D.; Ma, W.; Dai, X.; Yan, Z. Auto-Combustion Synthesis of Mn1−xAgxCo2O4 Catalysts for Diesel Soot Combustion. Catalysts 2022, 12, 1182. [Google Scholar] [CrossRef]
- Chen, F.; Fu, H.; Yang, X.; Xiong, S.; An, X. Fabrication of TaON/CdS Heterostructures for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Catalysts 2022, 12, 1110. [Google Scholar] [CrossRef]
- Tan, J.; Wei, G.; Wang, Z.; Su, H.; Liu, L.; Li, C.; Bian, J. Application of Zn1−xCdxS Photocatalyst for Degradation of 2-CP and TC, Catalytic Mechanism. Catalysts 2022, 12, 1100. [Google Scholar] [CrossRef]
- Wei, H.; Tan, A.; Liu, W.; Piao, J.; Wan, K.; Liang, Z.; Xiang, Z.; Fu, Z. Interface Engineering-Induced 1T-MoS2/NiS Heterostructure for Efficient Hydrogen Evolution Reaction. Catalysts 2022, 12, 947. [Google Scholar] [CrossRef]
- Wang, H.; Zhan, F.; Zhan, H.; Ming, X. Improve the Midpoint Voltage and Structural Stability of Li-Rich Manganese-Based Cathode Material by Increasing the Nickel Content. Catalysts 2022, 12, 584. [Google Scholar] [CrossRef]
- Li, D.; Liu, G.; Li, X.; Gao, Z.; Shao, H.; Tian, Z. Fabrication of a Heterobinuclear Redox Cycle to Enhance the Photocatalytic Activity of BiOCl. Catalysts 2022, 12, 512. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, D.; Zhao, X.; Chu, Z.; Zhang, L.; Cao, Y.; Si, W. Pt/Pd Decorate MOFs Derived Co-N-C Materials as High-Performance Catalysts for Oxygen Reduction Reaction. Catalysts 2022, 12, 482. [Google Scholar] [CrossRef]
- Zhao, S.; Li, H.; Zhang, W.; Wang, B.; Yang, X.; Peng, Y.; Zhang, Y.; Li, Z. Insight into Crystallization Features of MOR Zeolite Synthesized via Ice-Templating Method. Catalysts 2022, 12, 301. [Google Scholar] [CrossRef]
- Chu, S.; Wang, E.; Feng, F.; Zhang, C.; Jiang, J.; Zhang, Q.; Wang, F.; Bing, L.; Wang, G.; Han, D. A Review of Noble Metal Catalysts for Catalytic Removal of VOCs. Catalysts 2022, 12, 1543. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.; Wang, W.; Han, N. Synthesis and Application of Catalytic Materials in Energy and Environment. Catalysts 2023, 13, 213. https://doi.org/10.3390/catal13020213
Han D, Wang W, Han N. Synthesis and Application of Catalytic Materials in Energy and Environment. Catalysts. 2023; 13(2):213. https://doi.org/10.3390/catal13020213
Chicago/Turabian StyleHan, Dezhi, Wentai Wang, and Ning Han. 2023. "Synthesis and Application of Catalytic Materials in Energy and Environment" Catalysts 13, no. 2: 213. https://doi.org/10.3390/catal13020213
APA StyleHan, D., Wang, W., & Han, N. (2023). Synthesis and Application of Catalytic Materials in Energy and Environment. Catalysts, 13(2), 213. https://doi.org/10.3390/catal13020213