Fabrication of Pt-Loaded Catalysts Supported on the Functionalized Pyrolytic Activated Carbon Derived from Waste Tires for the High Performance Dehydrogenation of Methylcyclohexane and Hydrogen Production
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Instruments
2.3. Preparation of the PTC
2.4. Preparation of the Functionalized PTC Supports
2.5. Preparation of the Pt-Based Catalysts
2.6. Catalytic Reaction
2.7. Recycling Assays
3. Results and Discussion
3.1. Characterizations of the Functional PTC Supports
3.2. Characterizations of the Pt-Based Catalysts over the Functional PTC Supports
3.3. Optimization of Dehydrogenation Reaction Conditions
3.4. Dehydrogenation of MCH by the Pt-Based Catalysts over the Functional PTC Supports
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lee, H.; Kim, A.; Lee, B.; Lim, H. Comparative numerical analysis for an efficient hydrogen production via a steam methane reforming with a packed-bed reactor, a membrane reactor, and a sorption-enhanced membrane reactor. Energy Convers. Manag. 2020, 213, 112839. [Google Scholar] [CrossRef]
- Burhan, M.; Shahzad, M.W.; Oh, S.J.; Ng, K.C. A pathway for sustainable conversion of sunlight to hydrogen using proposed compact CPV system. Energy Convers. Manag. 2018, 165, 102–112. [Google Scholar] [CrossRef]
- Li, Z.; Yao, Z.H.; Haidry, A.A.; Plecenik, T.; Grancic, B.; Roch, T.; Gregor, M.; Plecenik, A. The effect of Nb doping on hydrogen gas sensing properties of capacitor-like Pt/Nb-TiO2/Pt hydrogen gas sensors. J. Alloys Compd. 2019, 806, 1052–1059. [Google Scholar] [CrossRef]
- Mohammadi, A.; Mehrpooya, M. Techno-economic analysis of hydrogen production by solid oxide electrolyzer coupled with dish collector. Energy Convers. Manag. 2018, 173, 167–178. [Google Scholar] [CrossRef]
- Salkuyeh, Y.K.; Saville, B.A.; MacLean, H.L. Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. Int. J. Hydrogen Energy 2017, 42, 18894–18909. [Google Scholar] [CrossRef]
- Zhu, Q.L.; Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 2015, 8, 478–512. [Google Scholar] [CrossRef]
- Kariya, N.; Fukuoka, A.; Ichikawa, M. Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under “wet–dry multiphase conditions”. Appl. Catal. A 2002, 233, 91–102. [Google Scholar] [CrossRef]
- Kou, Z.; Zhi, Z.; Xu, G.; An, Y.; He, C. Investigation of the performance and deactivation behavior of Raney-Ni catalyst in continuous dehydrogenation of cyclohexane under multiphase reaction conditions. Appl. Catal. A 2013, 467, 196–201. [Google Scholar] [CrossRef]
- Li, J.F.; Chai, Y.M.; Liu, B.; Wu, Y.L.; Li, X.H.; Tang, Z.; Liu, Y.Q.; Liu, C.G. The catalytic performance of Ni2P/Al2O3 catalyst in comparison with Ni/Al2O3 catalyst in dehydrogenation of cyclohexane. Appl. Catal. A 2014, 469, 434–441. [Google Scholar] [CrossRef]
- Zahid, A.H.; Amin, N.; Nisar, F.; Saghir, S. Analysis of MTH-System (Methylcyclohexane-Toluene-Hydrogen-System) for hydrogen production as fuel for power plants. Int. J. Hydrogen Energy 2020, 45, 32234–32242. [Google Scholar] [CrossRef]
- Shukla, A.A.; Gosavi, P.V.; Pande, J.V.; Kumar, V.P.; Chary, K.V.R.; Biniwale, R.B. Efficient hydrogen supply through catalytic dehydrogenation of methylcyclohexane over Pt/metal oxide catalysts. Int. J. Hydrogen Energy 2010, 35, 4020–4026. [Google Scholar] [CrossRef]
- Miao, L.; Yan, J.; Wang, W.Y.; Huang, Y.P.; Li, W.S.; Yang, Y.Q. Dehydrogenation of methylcyclohexane over Pt supported on Mg-Al mixed oxides catalyst: The effect of promoter Ir. Chin. J. Chem. Eng. 2020, 28, 2337–2342. [Google Scholar] [CrossRef]
- Sugiura, Y.; Nagatsuka, T.; Kubo, K.; Hirano, Y.; Nakamura, A.; Miyazawa, K.; Iizuka, Y.; Furuta, S.; Iki, H.; Higo, T.; et al. Dehydrogenation of Methylcyclohexane over Pt/TiO2-Al2O3 Catalysts. Chem. Lett. 2017, 46, 1601–1604. [Google Scholar] [CrossRef]
- Jiang, Z.; Guo, S.; Fang, T. Enhancing the catalytic activity and selectivity of PdAu/SiO2 bimetallic catalysts for dodecahydro-N-ethylcarbazole dehydrogenation by controlling the particle size and dispersion. ACS Appl. Energy Mater. 2019, 2, 7233–7243. [Google Scholar] [CrossRef]
- Copéret, C.; Adolfsson, H.; Sharpless, K.B. A simple and efficient method for epoxidation of terminal alkenes. Chem. Commun. 1997, 16, 1565–1566. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C.; Panicker, V.J. Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. J. Clean. Prod. 2016, 112, 504–513. [Google Scholar] [CrossRef]
- Brandsma, S.H.; Brits, M.; Groenewoud, Q.R.; Velzen, M.J.M.; Leonards, P.E.G.; Boert, J. Chlorinated Paraffins in Car tires recycled to rubber granulates and play-ground tiles. Environ. Sci. Technol. 2019, 53, 7595–7603. [Google Scholar] [CrossRef]
- Darmstadt, H.; Roy, C.; Kaliaguine, S. ESCA characterization of commercial carbon blacks and carbon blacks from vacuum pyrolysis of used tires. Carbon 1994, 32, 1399–1405. [Google Scholar] [CrossRef]
- Lee, W.H.; Kim, J.Y.; Ko, Y.K.; Reucroft, P.J.; Zondlo, J.W. Surface analysis of carbon black waste materials from tire residues. Appl. Surf. Sci. 1999, 141, 107–113. [Google Scholar] [CrossRef]
- Makrigianni, V.; Giannakas, A.; Deligiannakis, Y.; Konstantinou, I. Adsorption of phenol and methylene blue from aqueous solutions by pyrolytic tire char: Equilibrium and kinetic studies. J. Environ. Chem. Eng. 2015, 3, 574–582. [Google Scholar] [CrossRef]
- Salehs, T.A.; Al-Saadi, A.A.; Gupta, V.K. Carbonaceous adsorbent prepared from waste tires: Experimental and computational evaluations of organic dye methyl orange. J. Mol. Liq. 2014, 191, 85–91. [Google Scholar] [CrossRef]
- Esfandbod, M.; Merritt, C.R.; Rashti, M.R.; Singh, B.; Boyd, S.E.; Srivastava, P.; Brown, C.L.; Butler, O.M.; Kookana, R.S.; Chen, C. Role of oxygen-containing functional groups in forest fire-generated and pyrolytic chars for immobilization of copper and nickel. Environ. Pollut. 2017, 220, 946–954. [Google Scholar] [CrossRef]
- Han, Y.; Dong, X.T.; Zhang, C.; Liu, S.X. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. J. Power Sources 2012, 211, 92–96. [Google Scholar] [CrossRef]
- Han, Y.; Dong, X.T.; Zhang, C.; Liu, S.X. Easy synthesis of honeycomb hierarchical porous carbon and its capacitive performance. J. Power Sources 2013, 227, 118–122. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, P.P.; Dong, X.T.; Zhang, C.; Liu, S.X. Improvement in electrochemical capacitance of activated carbon from scrap tires by nitric acid treatment. Front. Mater. Sci. 2014, 8, 391–398. [Google Scholar] [CrossRef]
- Ji, R.N.; Yu, K.; Lou, L.L.; Zhang, C.; Han, Y.; Pan, S.; Liu, S.X. Chiral Mn (III) salen complexes immobilized directly on pyrolytic waste tire char for asymmetric epoxidation of unfunctionalized olefins. Inorg. Chem. Commun. 2012, 25, 65–69. [Google Scholar] [CrossRef]
- Simaioforidou, A.; Papastergiou, M.; Margellou, A.; Petrakis, D.; Louloudi, M. Activated vs. pyrolytic carbon as support matrix for chemical functionalization: Efficient heterogeneous non-Heme Mn (II) catalysts for alkene oxidation with H2O2. J. Mol. Catal. A Chem. 2017, 426, 516–525. [Google Scholar] [CrossRef]
- Seristatidou, E.; Mavrogiorgou, A.; Konstantinou, I.; Louloudi, M.; Deligiannakis, Y. Recycled carbon (RC) materials made functional: An efficient heterogeneous Mn-RC catalyst. J. Mol. Catal. A Chem. 2015, 403, 84–92. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, X.Q.; Liu, S.X. Hydrogen production by catalytic dehydrogenation of methylcyclohexane over Pt catalysts supported on pyrolytic waste tire char. Int. J. Hydrogen Energy 2011, 36, 8902–8907. [Google Scholar] [CrossRef]
- Mavrogiorgou, A.; Simaioforidou, A.; Louloudi, M. Pyrolytic carbon as support matrix for heterogeneous oxidation catalysts: The influence of pyrolytic process on catalytic behavior. J. Environ. Chem. Eng. 2018, 6, 1127–1136. [Google Scholar] [CrossRef]
- Ye, H.L.; Liu, S.X.; Zhang, C.; Cai, Y.Q.; Shi, Y.F. Dehydrogenation of methylcyclohexane over Pt-based catalysts supported on functional granular activated carbon. RSC Adv. 2021, 11, 29287–29297. [Google Scholar] [CrossRef]
- Cansado, I.P.P.; RamiroBelo, C.; Mourão, P.A. Pesticides abatement using activated carbon produced from a mixture of synthetic polymers by chemical activation with KOH and K2CO3. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100261. [Google Scholar] [CrossRef][Green Version]
- Li, W.Q.; Wang, F.M.; Zhan, X.B.; Sun, M.S.; Hu, J.Q.; Zhai, Y.; Lv, H.H.; Lv, G.J. Highly dispersed Pd nanoparticles supported on γ-Al2O3 modified by minimal 3-aminopropyltriethoxysilane as effective catalysts for 2-ethyl-anthraquinone hydrogenation. Appl. Catal. A 2021, 619, 118124. [Google Scholar] [CrossRef]
- Feng, J.T.; Wang, H.Y.; Evans, D.G.; Duan, X.; Li, D.Q. Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2–Al2O3 spherical catalysts. Appl. Catal. A 2010, 382, 240–245. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Wang, N.; Liu, G.Z.; Wang, L. Enhanced performance of Pd nanoparticles on SBA-15 grafted with alkyltrialkoxysilane in 2-ethyl-anthraquinone hydrogenation. Microporous Mesoporous Mater. 2019, 279, 245–251. [Google Scholar] [CrossRef]
- Qi, B.; Wang, Y.B.; Lou, L.L.; Huang, L.Y.; Yang, Y.; Liu, S.X. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41. J. Mol. Catal. A Chem. 2013, 370, 95–103. [Google Scholar] [CrossRef]
- Iost, K.N.; Borisov, V.A.; Temerev, V.L.; Surovikin, Y.V.; Pavluchenko, P.E.; Trenikhin, M.V.; Arbuzov, A.B.; Shlyapin, D.A.; Tsyrulnikov, P.G.; Vedyagin, A.A. Mechanism of Pt interfacial interaction with carbonaceous support under reductive conditions. React. Kinet. Mech. Catal. 2019, 127, 103–115. [Google Scholar] [CrossRef]
- Zhong, Y.L.; Sun, X.T.; Wang, S.Y.; Peng, F.; Bao, F.; Su, Y.Y.; Li, Y.Y.; Lee, S.T.; He, Y. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 2015, 9, 5958–5967. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, L.; Li, B.; Song, Y.; Zhao, X.; Zhang, G.; Zhang, S.; Lu, S.; Zhang, J.; Wang, H.; et al. Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon 2014, 77, 462–472. [Google Scholar] [CrossRef]
- Hosseini, M.S.; Masteri-Farahani, M.; Shahsavarifar, S. Chemical modification of re duce d graphene oxide with sulfonic acid groups: Efficient solid acids for acetalization and esterification reactions. J. Taiwan Inst. Chem. Eng. 2019, 102, 34–43. [Google Scholar] [CrossRef]
- Pyanova, L.G.; Luzyanina, L.S.; Drozdov, V.A.; Veselovskaya, A.V.; Arbuzov, A.B.; Likholobov, V.A. Study of the effect of a number of oxidizers on variation of composition of surface functional groups, porous structure, and adsorption properties of composite carbon-carbon sorbent. Prot. Met. Phys. Chem. Surf. 2010, 46, 320–324. [Google Scholar] [CrossRef]
- Tang, X.D.; Yu, H.M.; Bui, B.; Wang, L.Y.; Xing, C.; Wang, S.Y.; Chen, M.L.; Hu, Z.Z.; Chen, W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact. Mater. 2021, 6, 1541–1554. [Google Scholar] [CrossRef] [PubMed]
- Sandt, C.; Waeytens, J.; Deniset-Besseau, A.; Nielsen-Leroux, C.; Réjassed, A. Use and misuse of FTIR spectroscopy for studying the bio-oxidation of plastics. Spectrochim. Acta Part A 2021, 258, 119841. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.X.; Rowland, C.E.; Schaller, R.D.; Korgel, B.A. Synthesis and ligand exchange of thiol-capped silicon nanocrystals. Langmuir 2015, 31, 6886–6893. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.; Zhang, H.; Kim, Y.K.; Harbottle, D.; Lee, J.W. Enhanced adsorption capacity and selectivity towards strontium ions in aqueous systems by sulfonation of Co2 derived porous carbon. RSC Adv. 2017, 7, 54546–545537. [Google Scholar] [CrossRef]
- Yu, H.; Jin, Y.; Li, Z.; Peng, F.; Wang, H. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst. J. Solid State Chem. 2008, 181, 432–438. [Google Scholar] [CrossRef]
- Machado, J.; Castanheiro, J.E.; Matos, I.; Ramos, A.M.; Vital, J.; Fonseca, I.M. SBA-15 with sulfonic acid groups as a Green Catalyst for the acetoxylation of α-pinene. Microporous Mesoporous Mater. 2012, 163, 237–242. [Google Scholar] [CrossRef]
- Chen, H.P.; Xie, Y.P.; Chen, W.; Xia, M.W.; Li, K.X.; Chen, Z.Q.; Chen, Y.Q.; Yang, H.P. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS. Energy Convers. Manag. 2019, 196, 320–329. [Google Scholar] [CrossRef]
- Viscardia, R.; Barbarossa, V.; Maggi, R.; Pancrazzi, F. Effect of acidic MCM-41 mesoporous silica functionalized with sulfonic acid groups catalyst in conversion of methanol to dimethyl. Energy Rep. 2020, 6, 49–55. [Google Scholar] [CrossRef]
- Ding, H.; Yu, S.B.; Wei, J.S.; Xiong, H.M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491. [Google Scholar] [CrossRef]
- Ye, H.L.; Shang, Y.; Wang, H.Y.; Ma, Y.L.; He, X.W.; Li, W.Y.; Li, Y.H.; Zhang, Y.K. Determination of Fe(Ⅲ) ion and cellular bioimaging based on a novel photoluminescent silicon nanoparticles. Talanta 2021, 230, 122294. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.M.; Xu, G.T. Peak overlaps and corresponding solutions in theX-ray photoelectron spectroscopic study of hydrodesulfurization catalysts. Appl. Surf. Sci. 2010, 256, 3413–3417. [Google Scholar] [CrossRef]
- Qiu, L.M.; Zou, K.; Xu, G.T. Investigation on the sulfur state and phase transformation of spent and regenerated S zorb sorbents using XPS and XRD. Appl. Surf. Sci. 2013, 266, 230–234. [Google Scholar] [CrossRef]
- Bittencourt, C.; Hecq, M.; Felten, A.; Pireaux, J.J.; Ghijsen, J.; Felicissimo, M.P.; Rudolf, P.; Drube, W.; Ke, X.; Van, T.G. Platinum-carbon nanotube interaction. Chem. Phys. Lett. 2008, 462, 260–264. [Google Scholar] [CrossRef]
- Chen, F.T.; Huang, Y.P.; Mi, C.J.; Wu, K.; Wang, W.Y.; Li, W.S.; Yang, Y.Q. Density functional theory study on catalytic dehydrogenation of methylcyclohexane on Pt (111). Int. J. Hydrogen Energy 2020, 45, 6727–6737. [Google Scholar] [CrossRef]
- Miller, J.T.; Koningsberger, D.C. The origin of sulfur tolerance in supported platinum catalysts: The relationship between structural and catalytic properties in acidic and alkaline Pt/LTL. J. Catal. 1996, 162, 209–219. [Google Scholar] [CrossRef]
- Ji, X.; Lee, K.T.; Holden, R.; Zhang, L.; Zhang, J.; Botton, G.A.; Couillard, M.; Nazar, L.F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293. [Google Scholar] [CrossRef]
- Wang, L.; Chen, M.X.; Yan, Q.Q.; Xu, S.L.; Chu, S.Q.; Chen, P.; Lin, Y.; Liang, H.W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 2019, 5, eaax6322. [Google Scholar] [CrossRef]
- Yin, P.; Luo, X.; Ma, Y.F.; Chu, S.Q.; Chen, S.; Zheng, X.S.; Lu, J.L.; Wu, X.J.; Liang, H.W. Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nat. Chem. 2021, 12, 3135. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, W.; Li, X.; Tan, D.; Han, X.; Bao, X. One-pot encapsulation of Pt nanoparticles into the mesochannels of SBA-15 and their catalytic dehydrogenation of methylcyclohexane. Catal. Lett. 2007, 119, 159–164. [Google Scholar] [CrossRef]
- Wang, W.Y.; Miao, L.; Wu, K.; Chen, G.L.; Huang, Y.P.; Yang, Y.Q. Hydrogen evolution in the dehydrogenation of methylcyclohexane over Pt/Ce-Mg-Al-O catalysts derived from their layered double hydroxides. Int. J. Hydrogen Energy 2019, 44, 2918–2925. [Google Scholar] [CrossRef]
- Yang, X.; Song, Y.; Cao, T.T.; Wang, L.; Song, H.T.; Lin, W. The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane. Mol. Catal. 2020, 492, 110971. [Google Scholar] [CrossRef]
- Li, X.Y.; Ma, D.; Bao, X.H. Dispersion of Pt catalysts supported on activated carbon and their catalytic performance in methylcyclohexane dehydrogenation. Chin. J. Catal. 2008, 29, 259–263. [Google Scholar] [CrossRef]
Supports | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
PTC | 902 | 1.071 | 4.75 |
PTC-S | 898 | 1.133 | 5.05 |
PTC-K | 906 | 1.160 | 5.12 |
PTC-NH | 490 | 0.833 | 6.80 |
Catalysts | Adsorption Capacity of CO (μL/g Catalysts) | Surface Area of Metal (m2/g Sample) | Dispersion of Active Component Pt (%) | Mean Size of Pt (nm) |
---|---|---|---|---|
Pt/PTC | 58.9 | 63.3 | 25.6 | 4.42 |
Pt/PTC-S | 122.7 | 131.9 | 53.4 | 2.12 |
Pt/PTC-K | 28.0 | 30.1 | 12.2 | 9.31 |
Pt/PTC-NH | 9.89 | 10.6 | 4.3 | 26.3 |
Catalysts | Temperature (°C) | Rate of Liquid MCH (mL/min) | Catalyst Weight | Pt loading Content (wt %) | Conversion of MCH (%) | H2 Evolution Rate (mmol/gPt/min) | Refs. |
---|---|---|---|---|---|---|---|
Pt/SBA-15 | 300 °C | 0.03 | 0.05 | 3 | 65 (initial) | 308.6 | [60] |
Pt/Ce-Mg-Al O | 300 °C | - | - | 0.35 | 49.8 | 686.9 | [61] |
Pt/coconut activated carbon | 300 °C | 0.03 | 0.03 | 1 | 42 | 598.2 | [62] |
Pt/pyrolytic waste activated carbon | 300 °C | 0.03 | 0.554 | 0.4 | 95 | 305.3 | [29] |
Pt/GAC-S | 300 °C | 0.03 | 0.3 | 0.2 | 63 | 741.1 | [31] |
PtSn-5/Mg-Al-O-350 | 300 °C | 0.1 | 0.5 | 2 | 90.5 | 214.8 | [63] |
Pt/PTC-S | 300 °C | 0.03 | 0.3 | 0.2 | 84.3 | 991.5 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Wang, T.; Liu, S.; Zhang, C.; Cai, Y. Fabrication of Pt-Loaded Catalysts Supported on the Functionalized Pyrolytic Activated Carbon Derived from Waste Tires for the High Performance Dehydrogenation of Methylcyclohexane and Hydrogen Production. Catalysts 2022, 12, 211. https://doi.org/10.3390/catal12020211
Ye H, Wang T, Liu S, Zhang C, Cai Y. Fabrication of Pt-Loaded Catalysts Supported on the Functionalized Pyrolytic Activated Carbon Derived from Waste Tires for the High Performance Dehydrogenation of Methylcyclohexane and Hydrogen Production. Catalysts. 2022; 12(2):211. https://doi.org/10.3390/catal12020211
Chicago/Turabian StyleYe, Hongli, Tianci Wang, Shuangxi Liu, Cui Zhang, and Youqiong Cai. 2022. "Fabrication of Pt-Loaded Catalysts Supported on the Functionalized Pyrolytic Activated Carbon Derived from Waste Tires for the High Performance Dehydrogenation of Methylcyclohexane and Hydrogen Production" Catalysts 12, no. 2: 211. https://doi.org/10.3390/catal12020211
APA StyleYe, H., Wang, T., Liu, S., Zhang, C., & Cai, Y. (2022). Fabrication of Pt-Loaded Catalysts Supported on the Functionalized Pyrolytic Activated Carbon Derived from Waste Tires for the High Performance Dehydrogenation of Methylcyclohexane and Hydrogen Production. Catalysts, 12(2), 211. https://doi.org/10.3390/catal12020211