CdS Nanoparticles Decorated 1D CeO2 Nanorods for Enhanced Photocatalytic Desulfurization Performance
Abstract
:1. Introduction
2. Results
2.1. Preparation of Samples
2.1.1. Synthesis of CeO2 Nanorods
2.1.2. Synthesis of CdS/CeO2 Composite
2.2. Characterization
2.3. Photoelectrochemical Measurements
2.4. Photocatalytic Desulfurization Measurement
3. Discussion
3.1. XRD Patterns Analysis
3.2. Raman Spectroscopy Analysis
3.3. Morphological Analysis
3.4. XPS Spectra Analysis
3.5. UV-Vis DRS Analysis
3.6. Performance of Photocatalytic Desulfurization
3.7. Photoelectrochemical and PL Analysis
3.8. Photocatalytic Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lahieb Faisal, M.; Ali, S.A.K.; Al-Sharify, Z.T.; Ali, A. The Effect of Smoke from Factories, Electricity Generator and Vehicles on Human Health and Environment. A Review. Solid State Technol. 2020, 63, 21390–21398. [Google Scholar]
- Li, X.Z.; Li, F.H.; Lu, X.W.; Zuo, S.X.; Yao, C.; Ni, C.Y. Development of Bi2W1−xMoxO6/Montmorillonite nanocomposite as efficient catalyst for photocatalytic desulfurization. J. Alloys Compd. 2017, 709, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Díaz de León, J.N.; Ramesh Kumar, C.; Antúnez-García, J.; Fuentes-Moyado, S. Recent insights in transition metal sulfide hydrodesulfurization catalysts for the production of ultra low sulfur diesel: A short review. Catalysts 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Crucianelli, M.; Bizzarri, B.M.; Saladino, R. SBA-15 anchored metal containing catalysts in the oxidative desulfurization process. Catalysts 2019, 9, 984. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Jhung, S.H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks. J. Hazard. Mater. 2016, 301, 259–276. [Google Scholar] [CrossRef]
- Chen, S.Q.; Zang, M.; Li, L.; Chen, J.T.; Liu, Q.Y.; Feng, X.W.; Sun, S.; Zang, C.W.; Zhao, C.C. Efficient biodesulfurization of diesel oil by Gordonia sp. SC-10 with highly hydrophobic cell surface. Biochem. Eng. J. 2021, 174, 108094. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhu, W.; Lu, X.W.; Zuo, S.X.; Yao, C.; Ni, C.Y. Integrated nanostructures of CeO2 /attapulgite/g-C3N4 as efficient catalyst for photocatalytic desulfurization: Mechanism, kinetics and influencing factors. Chem. Eng. J. 2017, 326, 87–98. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, T.Y.; Liu, H.; Gao, X.C.; Wang, C.Y.; Wang, G.X. Desulfurization through photocatalytic oxidation: A critical review. ChemSusChem 2021, 14, 492–511. [Google Scholar] [CrossRef]
- Hitam, C.N.C.; Jalil, A.A.; Triwahyono, S.; Rahman, A.F.A.; Hassan, N.S.; Khusnun, N.F.; Jamian, S.F.; Mamat, C.R.; Nabgan, W.; Ahmad, A. Effect of carbon-interaction on structure-photoactivity of Cu doped amorphous TiO2 catalysts for visible-light-oriented oxidative desulphurization of dibenzothiophene. Fuel 2018, 216, 407–417. [Google Scholar] [CrossRef]
- Zhang, G.; Gao, M.; Tian, M.; Zhao, W.F. In situ hydrothermal preparation and photocatalytic desulfurization per formance of graphene wrapped TiO2 composites. J. Solid State Chem. 2019, 279, 120953. [Google Scholar] [CrossRef]
- Mousavi-Kamazani, M. Cube-like Cu/Cu2O/BiVO4/Bi7VO13 composite nanoparticles: Facile sol-gel synthesis for photocatalytic desulfurization of thiophene under visible light. J. Alloys Compd. 2018, 823, 153786. [Google Scholar] [CrossRef]
- Ebadi, M.; Asri, M.; Beshkar, F. Novel Mo/Bi2MoO6/Bi3ClO4 heterojunction photocatalyst for ultra-deep desulfurization of thiophene under simulated sunlight irradiation. Adv. Powder Technol. 2021, 32, 2160–2170. [Google Scholar] [CrossRef]
- Li, B.L.; Song, H.Y.; Han, F.Q.; Wei, L.S. Photocatalytic oxidative desulfurization and denitrogenation for fuels in ambient air over Ti3C2/g-C3N4 composites under visible light irradiation. Appl. Catal. B 2020, 269, 118845. [Google Scholar] [CrossRef]
- Lu, X.W.; Chen, F.; Qian, J.C.; Fu, M.; Jiang, Q.; Zhang, Q.F. Facile fabrication of CeF3/g-C3N4 heterojunction photocatalysts with upconversion properties for enhanced photocatalytic desulfurization performance. J. Rare Earths 2021, 39, 1204–1210. [Google Scholar] [CrossRef]
- Bagheri, M.; Masoomi, M.Y.; Morsali, A. A MoO3-metal-organic framework composite as a simultaneous photocatalyst and catalyst in the PODS process of light oil. ACS Catal 2017, 7, 6949–6956. [Google Scholar] [CrossRef]
- Kusmierek, E. A CeO2 semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: A review. Catalysts 2020, 10, 1435. [Google Scholar] [CrossRef]
- Wang, A.Q.; Zheng, Z.K.; Wang, H.; Yuwen Chen, Y.W.; Luo, C.H.; Liang, D.J.; Hu, B.W.; Qiu, R.L.; Yan, K. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation. Appl. Catal. B 2020, 277, 119171. [Google Scholar] [CrossRef]
- García-López, E.I.; Abbasi, Z.; Parrino, F.; La Parola, V.; Liotta, L.F.; Marcì, G. Au/CeO2 Photocatalyst for the Selective Oxidation of Aromatic Alcohols in Water under UV, Visible and Solar Irradiation. Catalysts 2021, 11, 1467. [Google Scholar] [CrossRef]
- Liu, J.W.; Zhang, L.; Sun, Y.F.; Luo, Y. Bifunctional Ag-decorated CeO2 nanorods catalysts for promoted photodegradation of methyl orange and photocatalytic hydrogen evolution. Nanomaterials 2021, 11, 1104. [Google Scholar] [CrossRef]
- Zhong, Y.; Peng, C.D.; He, Z.T.; Chen, D.M.; Jia, H.L.; Zhang, J.Z.; Ding, H.; Wu, X.F. Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catal. Sci. Technol. 2021, 11, 27–42. [Google Scholar] [CrossRef]
- Alomar, M.; Liu, Y.L.; Chen, W.; Fida, H. Controlling the growth of ultrathin MoS2 nanosheets/CdS nanoparticles by two-step solvothermal synthesis for enhancing photocatalytic activities under visible light. Appl. Surf. Sci. 2019, 480, 1078–1088. [Google Scholar] [CrossRef]
- Ning, X.; Lu, G. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale 2020, 12, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Bi, X.Z.; Si, D.J.; Jiang, Z.Q.; Huang, W.X. Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl. Surf. Sci. 2007, 253, 8952–8961. [Google Scholar] [CrossRef]
- Cui, H.J.; Li, B.B.; Zhang, Y.Z.; Zheng, X.D.; Li, X.Z.; Li, Z.Y.; Xu, S. Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance. Int. J. Hydrogen Energy 2018, 43, 18242–18252. [Google Scholar] [CrossRef]
- Mani, A.D.; Nandy, S.; Subrahmanyam, C. Synthesis of CdS/CeO2 nanomaterials for photocatalytic H2 production and simultaneous removal of phenol and Cr (VI). J. Environ. Chem. Eng. 2015, 3, 2350–2357. [Google Scholar] [CrossRef]
- Xu, J.; Li, M.; Qiu, J.H.; Zhang, X.F.; Feng, Y.; Yao, J.F. PEGylated deep eutectic solvent-assisted synthesis of CdS@CeO2 composites with enhanced visible light photocatalytic ability. Chem. Eng. J. 2020, 383, 123135. [Google Scholar] [CrossRef]
- Maslakov, K.I.; Teterin, Y.A.; Popel, A.J.; Teterin, A.Y.; Ivanov, K.E.; Kalmykov, S.N.; Petrova, V.G.; Petrov, P.K.; Farnan, I. XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples. Appl. Surf. Sci. 2018, 448, 154–162. [Google Scholar] [CrossRef]
- Guo, C.F.; Chen, D.L.; Hu, Y. Perspective on Defective Semiconductor Heterojunctions for CO2 Photoreduction. Langmuir 2022, 38, 6491–6498. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.M.; Zhang, H.Y.; Khan, S.; Chen, X.J.; Chen, F.; Guo, C.F.; Zhong, Y.J.; Hu, Y. In-situ photodeposition of cadmium sulfide nanocrystals on manganese dioxide nanorods with rich oxygen vacancies for boosting water-to-oxygen photooxidation. J. Colloid Interface Sci. 2022, 613, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, B.C.; Liu, M.J.; Zhang, L.Y.; Yu, J.G.; Zhou, M.H. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Catal. B 2019, 243, 19–26. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Q.F.; Zou, Z.G. Recent advances in designing ZnIn2S4-based heterostructured photocatalysts for hydrogen evolution. J. Mater. Sci. Technol. 2022, 139, 167–188. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Zhang, Y.L.; Wu, J.X.; Dai, H.L.; Ma, C.J.; Zhang, Q.F.; Zou, Z.G. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution. J. Mater. Sci. Technol. 2022, 114, 81–89. [Google Scholar] [CrossRef]
- Lu, X.W.; Li, X.Z.; Chen, F.; Chen, Z.G.; Qian, J.; Zhang, Q.F. Biotemplating synthesis of N-doped two-dimensional CeO2-TiO2 nanosheets with enhanced visible light photocatalytic desulfurization performance. J. Alloys Compd. 2020, 815, 152326. [Google Scholar] [CrossRef]
- Li, L.; Guo, C.F.; Ning, J.Q.; Zhong, Y.J.; Chen, D.L.; Hu, Y. Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Appl. Catal. B Environ. 2022, 613, 764–774. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.H.; Wang, H.G.; Zhang, Y.C.; Dionysiou, D.D. Synergistic effect of reduced graphene oxide and near-infrared light on MoS2-mediated electrocatalytic hydrogen evolution. Chem. Eng. J. 2021, 418, 129343. [Google Scholar] [CrossRef]
- Lu, X.W.; Li, X.Z.; Qian, J.C.; Miao, N.M.; Yao, C.; Chen, Z.G. Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. J. Alloys Compd. 2016, 661, 363–371. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, L.; Zhang, Y.C.; Wang, X.Z.; Wang, H.G. Snowflake-Like Cu2S/MoS2/Pt heterostructure with near infrared photothermal-enhanced electrocatalytic and photoelectrocatalytic hydrogen production. Appl. Catal. B Environ. 2022, 315, 121540. [Google Scholar] [CrossRef]
- Sun, J.B.; Han, N.; Gu, Y.; Lu, X.W.; Si, L.; Zhang, Q.F. Hole Doping to Enhance the Photocatalytic Activity of Bi4NbO8Cl. Catalysts 2020, 10, 1425. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.C.; Wang, Y.Y.; Zhu, A.P.; Zhang, Y. Efficient photocatalytic reduction of aqueous Cr (VI) by Zr4+ doped and polyaniline coupled SnS2 nanoflakes. Sep. Purif. Technol. 2022, 283, 120161. [Google Scholar] [CrossRef]
- Guo, X.Y.; Chen, C.F.; Song, W.Y.; Wang, X.; Di, W.H.; Qin, W.P. CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis. J. Mol. Catal. A Chem. 2014, 387, 1–6. [Google Scholar] [CrossRef]
- Lu, X.W.; Quan, L.M.; Hou, H.J.; Qian, J.C.; Liu, Z.W.; Zhang, Q.F. Fabrication of 1D/2D Y-doped CeO2/ZnIn2S4 S-scheme photocatalyst for enhanced photocatalytic H2 evolution. J. Alloys Compd. 2022, 925, 166552. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, W.S.; Xu, Y.H.; Xu, H.; Zhang, M.; Chao, Y.H.; Yin, S.; Li, H.M.; Wang, J.G. Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization. Ceram. Int. 2014, 40, 11627–11635. [Google Scholar] [CrossRef]
- Xiong, J.; Di, J.; Xia, J.X.; Zhu, W.S.; Li, H.M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Liu, Z.; Zhao, X.; Xu, W.; Hou, H.; Qian, J. CdS Nanoparticles Decorated 1D CeO2 Nanorods for Enhanced Photocatalytic Desulfurization Performance. Catalysts 2022, 12, 1478. https://doi.org/10.3390/catal12111478
Lu X, Liu Z, Zhao X, Xu W, Hou H, Qian J. CdS Nanoparticles Decorated 1D CeO2 Nanorods for Enhanced Photocatalytic Desulfurization Performance. Catalysts. 2022; 12(11):1478. https://doi.org/10.3390/catal12111478
Chicago/Turabian StyleLu, Xiaowang, Zhengwei Liu, Xiangping Zhao, Weiye Xu, Haijun Hou, and Junchao Qian. 2022. "CdS Nanoparticles Decorated 1D CeO2 Nanorods for Enhanced Photocatalytic Desulfurization Performance" Catalysts 12, no. 11: 1478. https://doi.org/10.3390/catal12111478
APA StyleLu, X., Liu, Z., Zhao, X., Xu, W., Hou, H., & Qian, J. (2022). CdS Nanoparticles Decorated 1D CeO2 Nanorods for Enhanced Photocatalytic Desulfurization Performance. Catalysts, 12(11), 1478. https://doi.org/10.3390/catal12111478