Zinc Oxide–Graphene Nanocomposite-Based Sensor for the Electrochemical Determination of Cetirizine
Abstract
:1. Introduction
2. Results and Discussions
2.1. Characterization of Modifier
2.2. Area of ZnO-Gr Sensor
2.3. Voltametric Behavior of CET
2.4. Accumulation Time
2.5. pH Variation
2.6. Scan Rate Effect
2.7. Possible Electrode Reaction
3. Analytical Applications
3.1. Impact of Concentration
3.2. Excipient Interference Study
3.3. Tablet Sample Analysis
3.4. Urine Sample Analysis
3.5. Stability of the Sensor
4. Experimental
4.1. Materials and Reagents
4.2. Instrumentation
4.3. Synthesis of ZnO Nanoparticles
4.4. Tablet and Urine Sample Preparation
4.5. Fabrication of ZnO-Gr/CPE
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudaz, S.; Souverain, S.; Schelling, C.; Deleers, M.; Klomp, A.; Norris, A.; Vu, T.; Ariano, B.; Veuthey, J.-L. Development and validation of a heart-cutting liquid chromatography–mass spectrometry method for the determination of process-related substances in cetirizine tablets. Anal. Chim. Acta 2003, 492, 271–282. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Srivastava, A.K. Simultaneous voltammetric determination of paracetamol, cetirizine and phenylephrine using a multiwalled carbon nanotube-platinum nanoparticles nanocomposite modified carbon paste electrode. Sens. Actuators B Chem. 2016, 233, 237–248. [Google Scholar] [CrossRef]
- Vernekar, P.R.; Shetti, N.P.; Shanbhag, M.M.; Malode, S.J.; Malladi, R.S.; Reddy, K.R. Novel layered structured bentonite clay-based electrodes for electrochemical sensor applications. Microchem. J. 2020, 159, 105441. [Google Scholar] [CrossRef]
- Kudchi, R.S.; Shetti, N.P.; Malode, S.J.; Todakar, A.B. Electroanalysis of an antihistamine drug at nano structured modified electrode. Mater. Today Proc. 2019, 18, 558–565. [Google Scholar] [CrossRef]
- Kowalski, P.; Plenis, A. Comparison of HPLC and CE methods for the determination of cetirizine dihydrochloride in human plasma samples. Biomed. Chromatogr. 2007, 21, 903–911. [Google Scholar]
- Einarson, A.; Bailey, B.; Jung, G.; Spizzirri, D.; Baillie, M.; Koren, G. Prospective controlled study of hydroxyzine and cetirizine in pregnancy. Ann. Allergy Asthma Immunol. 1997, 78, 183–186. [Google Scholar]
- Pagliara, A.; Testa, B.; Carrupt, P.-A.; Jolliet, P.; Morin, C.; Morin, D.; Urien, S.; Tillement, J.-P.; Rihoux, J.-P. Molecular properties and pharmacokinetic behavior of cetirizine, a zwitterionic H1-receptor antagonist. J. Med. Chem. 1998, 41, 853–863. [Google Scholar] [CrossRef]
- Baltes, E.; Coupez, R.; Brouwers, L.; Gobert, J. Gas chromatographic method for the determination of cetirizine in plasma. J. Chromatogr. B Biomed. Sci. Appl. 1988, 430, 149–155. [Google Scholar] [CrossRef]
- Gazy, A.A.; Mahgoub, H.; El-Yazbi, F.; El-Sayed, M.; Youssef, R.M. Determination of some histamine H1-receptor antagonists in dosage forms. J. Pharm. Biomed. Anal. 2002, 30, 859–867. [Google Scholar] [CrossRef]
- Jaber, A.; Al Sherife, H.; Al Omari, M.; Badwan, A. Determination of cetirizine dihydrochloride, related impurities and preservatives in oral solution and tablet dosage forms using HPLC. J. Pharm. Biomed. Anal. 2004, 36, 341–350. [Google Scholar] [CrossRef]
- Rizk, N.M.; Abbas, S.S.; El-Sayed, F.A.; Abo-Bakr, A. Novel ionophore for the potentiometric determination of cetirizine hydrochloride in pharmaceutical formulations and human urine. Int. J. Electrochem. Sci. 2009, 4, 396–406. [Google Scholar]
- Marák, J.; Staňová, A. Buffer salt effects in off-line coupling of capillary electrophoresis and mass spectrometry. Electrophoresis 2014, 35, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Gowda, B.; Melwanki, M.; Seetharamappa, J. Extractive spectrophotometric determination of ceterizine HCl in pharmaceutical preparations. J. Pharm. Biomed. Anal. 2001, 25, 1021–1026. [Google Scholar] [CrossRef]
- Bukkitgar, S.D.; Shetti, N.P.; Malladi, R.S.; Reddy, K.R.; Kalanur, S.S.; Aminabhavi, T.M. Novel ruthenium doped TiO2/reduced graphene oxide hybrid as highly selective sensor for the determination of ambroxol. J. Mol. Liq. 2020, 300, 112368. [Google Scholar] [CrossRef]
- Sawkar, R.R.; Shanbhag, M.M.; Tuwar, S.M.; Shetti, N.P. Silica gel-based electrochemical sensor for tinidazole. Sens. Int. 2022, 3, 100192. [Google Scholar] [CrossRef]
- Vernekar, P.R.; Shanbhag, M.M.; Shetti, N.P.; Mascarenhas, R.J. Silica-gel incorporated carbon paste sensor for the electrocatalytic oxidation of famotidine and its application in biological sample analysis. Electrochem. Sci. Adv. 2021, e2100093. [Google Scholar] [CrossRef]
- Sawkar, R.R.; Patil, V.B.; Tuwar, S.M. Electrochemical oxidation of atorvastatin using graphene oxide and surfactant-based sensor. Mater. Today Proc. 2022; in press. [Google Scholar] [CrossRef]
- Shanbhag, M.M.; Shetti, N.P.; Kalanur, S.S.; Pollet, B.G.; Nadagouda, M.N.; Aminabhavi, T.M. Hafnium doped tungsten oxide intercalated carbon matrix for electrochemical detection of perfluorooctanoic acid. Chem. Eng. J. 2022, 434, 134700. [Google Scholar] [CrossRef]
- Shetti, N.P.; Malode, S.J.; Ilager, D.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis 2019, 31, 1040–1049. [Google Scholar] [CrossRef]
- Erady, V.; Mascarenhas, R.J.; Satpati, A.K.; Detriche, S.; Mekhalif, Z.; Delhalle, J.; Dhason, A. A novel and sensitive hexadecyltrimethylammoniumbromide functionalized Fe decorated MWCNTs modified carbon paste electrode for the selective determination of Quercetin. Mater. Sci. Eng. C 2017, 76, 114–122. [Google Scholar] [CrossRef]
- Patil, V.B.; Sawkar, R.R.; Tuwar, S.M. Electrochemical oxidation of ketorolac at graphene oxide-based sensor. Mat. Today Proc. 2022; in press. [Google Scholar] [CrossRef]
- Jain, R. Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor-based electrode in bulk form and pharmaceutical formulation. Colloids Surf. B Biointerfaces 2011, 87, 423–426. [Google Scholar] [CrossRef]
- Kang, C.G.; Kang, J.W.; Lee, S.K.; Lee, S.Y.; Cho, C.H.; Hwang, H.J.; Lee, Y.G.; Heo, J.; Chung, H.-J.; Yang, H. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask. Nanotechnology 2011, 22, 295201. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Ge, J.; Zhang, B.-P.; Wan, W. Improving photocatalytic performance of ZnO via synergistic effects of Ag nanoparticles and graphene quantum dots. Phys. Chem. Chem. Phys. 2015, 17, 18645–18652. [Google Scholar] [CrossRef]
- Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150. [Google Scholar] [CrossRef] [Green Version]
- Pumera, M. Graphene in biosensing. Mater. Today 2011, 14, 308–315. [Google Scholar] [CrossRef]
- Low, S.S.; Tan, M.T.; Loh, H.-S.; Khiew, P.S.; Chiu, W.S. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor. Anal. Chim. Acta 2016, 903, 131–141. [Google Scholar] [CrossRef]
- Yazid, S.N.A.M.; Isa, I.M.; Bakar, S.A.; Hashim, N.; Ghani, S.A. A review of glucose biosensors based on graphene/metal oxide nanomaterials. Anal. Lett. 2014, 47, 1821–1834. [Google Scholar] [CrossRef]
- Zhang, D.; Ashraf, M.A.; Liu, Z.; Li, C.; Peng, W. Effect of graphene nanoplatelets addition on the elastic properties of short ceramic fiber-reinforced aluminum-based hybrid nanocomposites. Mech. Based Des. Struct. Mach. 2022, 50, 1417–1433. [Google Scholar] [CrossRef]
- Lu, J.; Ng, K.M.; Yang, S. Efficient, one-step mechanochemical process for the synthesis of ZnO nanoparticles. Ind. Eng. Chem. Res. 2008, 47, 1095–1101. [Google Scholar] [CrossRef]
- Ahmad, R.; Tripathy, N.; Jang, N.K.; Khang, G.; Hahn, Y.-B. Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens. Actuators B Chem. 2015, 206, 146–151. [Google Scholar] [CrossRef]
- Jacobs, M.; Muthukumar, S.; Selvam, A.P.; Craven, J.E.; Prasad, S. Ultra-sensitive electrical immunoassay biosensors using nanotextured zinc oxide thin films on printed circuit board platforms. Biosens. Bioelectron. 2014, 55, 7–13. [Google Scholar] [CrossRef]
- Low, S.S.; Loh, H.-S.; Boey, J.S.; Khiew, P.S.; Chiu, W.S.; Tan, M.T. Sensitivity enhancement of graphene/zinc oxide nanocomposite-based electrochemical impedance genosensor for single stranded RNA detection. Biosens. Bioelectron. 2017, 94, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yan, H.; Shi, Z.; Feng, Y.; Li, J.; Lin, Q.; Wang, X.; Sun, W. A novel biosensor based on electro-co-deposition of sodium alginate-Fe3O4-graphene composite on the carbon ionic liquid electrode for the direct electrochemistry and electrocatalysis of myoglobin. Polym. Bull. 2017, 74, 75–90. [Google Scholar] [CrossRef]
- Liu, J.; Cui, M.; Niu, L.; Zhou, H.; Zhang, S. Enhanced peroxidase-like properties of graphene–hemin-composite decorated with Au nanoflowers as electrochemical aptamer biosensor for the detection of K562 leukemia cancer cells. Chem. A Eur. J. 2016, 22, 18001–18008. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.B.; Malode, S.J.; Mangasuli, S.N.; Tuwar, S.M.; Mondal, K.; Shetti, N.P. An electrochemical electrode to detect theophylline based on copper oxide nanoparticles composited with graphene oxide. Micromachines 2022, 13, 1166. [Google Scholar] [CrossRef] [PubMed]
- Salih, E.; Mekawy, M.; Hassan, R.Y.; El-Sherbiny, I.M. Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. J. Nanostructure Chem. 2016, 6, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Zang, J.; Li, C.M.; Cui, X.; Wang, J.; Sun, X.; Dong, H.; Sun, C.Q. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 2007, 19, 1008–1014. [Google Scholar] [CrossRef]
- Zhang, F.F.; Wang, X.; Ai, S.; Sun, Z.; Wan, Q.; Zhu, Z.; Xiai, Y.; Jin, L.; Yamamoto, K. Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta 2004, 519, 155–160. [Google Scholar] [CrossRef]
- Xia, Y.; Li, R.; Chen, R.; Wang, J.; Xiang, L. 3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review. Sensors 2018, 18, 1456. [Google Scholar] [CrossRef] [Green Version]
- Norouz, P.; Salimi, H.; Tajik, S.; Beitollahi, H.; Rezapour, M.; Larijani, B. Biosensing Applications of ZnO / Graphene on Glassy Carbon Electrode in Analysis of Tyrosine. Int. J. Electrochem. Sci. 2017, 12, 5254–5263. [Google Scholar] [CrossRef]
- Sawkar, R.R.; Patil, V.B.; Shanbhag, M.M.; Shetti, N.P.; Tuwar, S.M.; Aminabhavi, T.M. Detection of ketorolac drug using pencil graphite electrode. Biomed. Eng. Adv. 2021, 2, 100009. [Google Scholar] [CrossRef]
- Shanbhag, M.M.; Shetti, N.P.; Kalanur, S.S.; Pollet, B.G.; Upadhyaya, K.P.; Ayachit, N.H.; Aminabhavi, T.M. Hf-Doped Tungsten Oxide Nanorods as Electrode Materials for Electrochemical Detection of Paracetamol and Salbutamol. ACS Appl. Nano Mater. 2021, 5, 1263–1275. [Google Scholar] [CrossRef]
- Shetti, N.P.; Ilager, D.; Malode, S.J.; Monga, D.; Basu, S.; Reddy, K.R. Poly (eriochrome black T) modified electrode for electrosensing of methdilazine. Mater. Sci. Semicond. Processing 2020, 120, 105261. [Google Scholar] [CrossRef]
- Chen, C. Physicochemical, Pharmacological and Pharmacokinetic Properties of the Zwitterionic Antihistamines Cetirizine and Levocetirizine. Curr. Med. Chem. 2008, 15, 2173–2191. [Google Scholar] [CrossRef]
- Gosser, D.K. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms; VCH: New York, NY, USA, 1993. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Fundamentals and applications. Electrochem. Methods 2001, 2, 580–632. [Google Scholar]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Patil, V.B.; Sawkar, R.R.; Ilager, D.; Shetti, N.P.; Tuwar, S.M.; Aminabhavi, T.M. Glucose-based carbon electrode for trace-level detection of acetaminophen. Electrochem. Sci. Adv. 2021, e202100117. [Google Scholar] [CrossRef]
- Mao, S.; Chen, J. Graphene-based electronic biosensors. J. Mater. Res. 2017, 32, 2954–2965. [Google Scholar] [CrossRef]
- Tereshchenko, A.; Bechelany, M.; Viter, R.; Khranovskyy, V.; Smyntyna, V.; Starodub, N.; Yakimova, R. Optical biosensors based on ZnO nanostructures: Advantages and perspectives. A review. Sens. Actuators B 2016, 229, 664–677. [Google Scholar] [CrossRef] [Green Version]
- Patil, R.H.; Hegde, R.N.; Nandibewoor, S.T. Electro-oxidation and determination of antihistamine drug, cetirizine dihydrochloride at glassy carbon electrode modified with multi-walled carbon nanotubes. Colloids Surf. B Biointerfaces 2011, 83, 133–138. [Google Scholar] [CrossRef]
- Güngör, S. Electrooxidation of cetirizine dihydrochloride with a glassy carbon electrode. Die Pharm. Int. J. Pharm. Sci. 2004, 59, 929–933. [Google Scholar]
- Karakaya, S.; Dilgin, D.G. Low-cost determination of cetirizine by square wave voltammetry in a disposable electrode. Mon. Chem. Chem. Mon. 2019, 150, 1003–1010. [Google Scholar] [CrossRef]
- Pourghazi, K.; Khoshhesab, Z.M.; Golpayeganizadeh, A.; Shapouri, M.R.; Afrouzi, H. Spectrophotometric determination of cetirizine and montelukast in prepared formulations. Int. J. Pharm. Pharm. Sci. 2011, 3, 128–130. [Google Scholar]
- Culkova, E.; Lukacova-Chomistekova, Z.; Bellova, R.; Melichercikova, D.; Durdiak, J.; Timko, J.; Rievaj, M.; Tomcik, P. Boron-doped diamond film electrode as voltammetric sensor for cetirizine. Int. J. Electrochem. Sci. 2018, 13, 6358–6372. [Google Scholar] [CrossRef]
- Mesgari, M.A.; Hamishekar, V.H.; Mohammadnejad, L.; Zakeri-Milani, P. The effects of cetirizine on P-glycoprotein expression and function In vitro and In situ. Adv. Pharm Bull. 2016, 6, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Bagihalli, G.B.; Kalanur, S.S.; Malladi, R.S.; Reddy, C.V.; Aminabhavi, T.M.; Reddy, K.R. Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl. Surf. Sci. 2019, 496, 143656. [Google Scholar] [CrossRef]
Electrode Used | Detection Limit (M) | Reference |
---|---|---|
GCE/MWCNT | 7.1 × 10−6 | [52] |
GCE | 4.3 × 10−6 | [53] |
Pretreated PGE | 0.2 × 10−6 | [54] |
Spectrophotometric determination | 2.4 × 10−7 | [55] |
BDD film electrode | 1.6 × 10−8 | [56] |
MWCNT-PtNPs/CPE | 5.8 × 10−8 | [2] |
ZnO-Gr/CPE | 2.8 × 10−8 | Present method |
Cetirizine | Observations |
---|---|
Amount specified (mg) | 10 |
Amount obtained (mg) a | 9.69 |
RSD % | 3.69% |
Added (mg) | 1 |
Obtained (mg) a | 0.86 |
Recovery | 96.92% |
Sample | Spiked (10−6 M) | Found (10−6 M) | Recovery % |
---|---|---|---|
1 | 1.0 | 0.99 | 99.8 |
2 | 2.0 | 1.92 | 96.4 |
3 | 3.0 | 2.78 | 92.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawkar, R.R.; Shanbhag, M.M.; Tuwar, S.M.; Mondal, K.; Shetti, N.P. Zinc Oxide–Graphene Nanocomposite-Based Sensor for the Electrochemical Determination of Cetirizine. Catalysts 2022, 12, 1166. https://doi.org/10.3390/catal12101166
Sawkar RR, Shanbhag MM, Tuwar SM, Mondal K, Shetti NP. Zinc Oxide–Graphene Nanocomposite-Based Sensor for the Electrochemical Determination of Cetirizine. Catalysts. 2022; 12(10):1166. https://doi.org/10.3390/catal12101166
Chicago/Turabian StyleSawkar, Rakesh R., Mahesh M. Shanbhag, Suresh M. Tuwar, Kunal Mondal, and Nagaraj P. Shetti. 2022. "Zinc Oxide–Graphene Nanocomposite-Based Sensor for the Electrochemical Determination of Cetirizine" Catalysts 12, no. 10: 1166. https://doi.org/10.3390/catal12101166
APA StyleSawkar, R. R., Shanbhag, M. M., Tuwar, S. M., Mondal, K., & Shetti, N. P. (2022). Zinc Oxide–Graphene Nanocomposite-Based Sensor for the Electrochemical Determination of Cetirizine. Catalysts, 12(10), 1166. https://doi.org/10.3390/catal12101166